Zhu Rongyan, Yu Xiao, Li Yulan
The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, Gansu, China.
Department of Reproductive Medicine, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China.
Sci Rep. 2025 Jul 26;15(1):27199. doi: 10.1038/s41598-025-11591-w.
Polycystic ovary syndrome (PCOS), an endocrine disorder emerging in adolescence and reproductive years, has been linked to glycolysis in prior studies, though the precise mechanistic role of glycolysis in its pathogenesis remains unclear. Therefore, this study sought to identify glycolysis-related biomarkers in PCOS and elucidate their regulatory mechanisms to provide novel therapeutic strategies. Utilizing publicly available datasets, biomarkers were identified via differential analysis, various PPI algorithms, and validation of expression patterns. Subsequent analyses included functional enrichment, tissue and cell-specific expression profiling, m6A modification site prediction, compound screening, molecular network construction, and molecular docking. RT-qPCR was performed on clinical samples for experimental validation. Two biomarkers, TXNIP and TGFBI, were identified and jointly enriched in "complement and coagulation cascades". TXNIP showed elevated expression in tongue and endocrine cells, whereas TGFBI was highly expressed in placental and adipocyte tissues. TGFBI had 14 high-confidence m6A modification sites and TXNIP had 1 high-confidence m6A modification site. The identified regulatory networks included hsa-miR-6761-5p-TXNIP-PPARG and hsa-miR-6761-5p-TGFBI-RB1. Four key compounds-acetaminophen, bisphenol A, tetrachlorodibenzodioxin, and valproic acid-were prioritized, with molecular docking revealing strongest binding affinities between bisphenol A and both biomarkers (TXNIP: -5.9 kcal/mol; TGFBI: -13.1 kcal/mol). RT-qPCR validation in granulosa cells from PCOS patients confirmed significant upregulation of TGFBI and TXNIP, aligning with bioinformatics predictions. These findings suggest that TXNIP and TGFBI may serve as potential biomarkers associated with glycolytic dysregulation in PCOS, offering insights into the interplay between metabolic dysfunction and disease mechanisms.
多囊卵巢综合征(PCOS)是一种在青春期和生育期出现的内分泌紊乱疾病,先前的研究已将其与糖酵解联系起来,尽管糖酵解在其发病机制中的确切作用仍不清楚。因此,本研究旨在识别PCOS中与糖酵解相关的生物标志物,并阐明其调控机制,以提供新的治疗策略。利用公开可用的数据集,通过差异分析、各种蛋白质-蛋白质相互作用(PPI)算法和表达模式验证来识别生物标志物。随后的分析包括功能富集、组织和细胞特异性表达谱分析、m6A修饰位点预测、化合物筛选、分子网络构建和分子对接。对临床样本进行逆转录定量聚合酶链反应(RT-qPCR)以进行实验验证。鉴定出两种生物标志物硫氧还蛋白相互作用蛋白(TXNIP)和转化生长因子β诱导蛋白(TGFBI),它们共同富集于“补体和凝血级联反应”。TXNIP在舌细胞和内分泌细胞中表达升高,而TGFBI在胎盘组织和脂肪细胞中高表达。TGFBI有14个高置信度的m6A修饰位点,TXNIP有1个高置信度的m6A修饰位点。鉴定出的调控网络包括hsa-miR-6761-5p-TXNIP-过氧化物酶体增殖物激活受体γ(PPARG)和hsa-miR-6761-5p-TGFBI-视网膜母细胞瘤蛋白(RB1)。确定了四种关键化合物——对乙酰氨基酚、双酚A、四氯二苯并二恶英和丙戊酸——具有优先地位,分子对接显示双酚A与两种生物标志物之间的结合亲和力最强(TXNIP:-5.9千卡/摩尔;TGFBI:-13.1千卡/摩尔)。对PCOS患者颗粒细胞进行的RT-qPCR验证证实了TGFBI和TXNIP的显著上调,与生物信息学预测结果一致。这些发现表明,TXNIP和TGFBI可能是与PCOS中糖酵解失调相关的潜在生物标志物,为代谢功能障碍与疾病机制之间的相互作用提供了见解。