Suppr超能文献

基于超声的三阴性乳腺癌新辅助化疗反应的多模态预测

Multimodal prediction based on ultrasound for response to neoadjuvant chemotherapy in triple negative breast cancer.

作者信息

Lyu Maohua, Yi Shouheng, Li Chunyan, Xie Yu, Liu Yu, Xu Zeyan, Wei Zhitao, Lin Huan, Zheng Yunlin, Huang Chunwang, Lin Xi, Liu Zaiyi, Pei Shufang, Huang Biao, Shi Zhenwei

机构信息

Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.

出版信息

NPJ Precis Oncol. 2025 Jul 25;9(1):259. doi: 10.1038/s41698-025-01057-7.

Abstract

Pathological complete response (pCR) can guide surgical strategy and postoperative treatments in triple-negative breast cancer (TNBC). In this study, we developed a Breast Cancer Response Prediction (BCRP) model to predict the pCR in patients with TNBC. The BCRP model integrated multi-dimensional longitudinal quantitative imaging features, clinical factors and features from the Breast Imaging Data and Reporting System (BI-RADS). Multi-dimensional longitudinal quantitative imaging features, including deep learning features and radiomics features, were extracted from multiview B-mode and colour Doppler ultrasound images before and after treatment. The BCRP model achieved the areas under the receiver operating curves (AUCs) of 0.94 [95% confidence interval (CI), 0.91-0.98] and 0.84 [95%CI, 0.75-0.92] in the training and external test cohorts, respectively. Additionally, the low BCRP score was an independent risk factor for event-free survival (P < 0.05). The BCRP model showed a promising ability in predicting response to neoadjuvant chemotherapy in TNBC, and could provide valuable information for survival.

摘要

病理完全缓解(pCR)可指导三阴性乳腺癌(TNBC)的手术策略和术后治疗。在本研究中,我们开发了一种乳腺癌反应预测(BCRP)模型来预测TNBC患者的pCR。BCRP模型整合了多维度纵向定量成像特征、临床因素以及来自乳腺影像数据和报告系统(BI-RADS)的特征。多维度纵向定量成像特征,包括深度学习特征和放射组学特征,是从治疗前后的多视角B超和彩色多普勒超声图像中提取的。BCRP模型在训练队列和外部测试队列中的受试者工作特征曲线下面积(AUC)分别为0.94 [95%置信区间(CI),0.91 - 0.98]和0.84 [95%CI,0.75 - 0.92]。此外,低BCRP评分是无事件生存的独立危险因素(P < 0.05)。BCRP模型在预测TNBC新辅助化疗反应方面显示出有前景的能力,并可为生存提供有价值的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验