Bertucci Simone, Escher Andrea, Bravetti Gianluca, Miranda Murillo Jean Pierre, Mazzotta Gianluca, Slimani Sawssen, Alberti Stefano, Lova Paola, Comoretto Davide, Steiner Ullrich, Peddis Davide, Dodero Andrea
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
Chem Mater. 2025 Jul 10;37(14):5406-5416. doi: 10.1021/acs.chemmater.5c01442. eCollection 2025 Jul 22.
Hybrid materials that integrate photonic and magnetic functionalities are a major focus of next-generation nanotechnology, but their scalable production remains a significant challenge. Here, we present a facile strategy to produce hybrid photonic microparticles by coassembling poly-(styrene)--poly-(2-vinylpyridine) (PS-P2VP) block copolymers with 10 nm cobalt ferrite nanoparticles within emulsion droplets. This method allows the formation of highly ordered, hierarchical, onion-like structures with alternating concentric layers. Selective localization of the nanoparticles within P2VP domains preserves the periodicity essential for structural coloration while introducing tunable magnetic properties. Optical characterization confirms that the microparticles exhibit a vivid blue structural color and maintain a well-defined photonic bandgap up to a critical nanoparticle concentration, after which the structural order is disrupted. Remarkably, the nanostructure order of the polymer matrix induces a partial alignment of the magnetic easy axis of the nanoparticles, increasing the thermal stability of the magnetization (i.e., increase in the reduced remanent magnetization). This distinctive synergy between photonic and magnetic properties establishes a platform for multifunctional materials with potential applications in magnetically tunable photonic devices, advanced sensors, and responsive materials. The results demonstrate a scalable and versatile approach to fusing photonic architectures with functional nanomaterials, providing design opportunities for next-generation hybrid materials.
集成光子和磁功能的杂化材料是下一代纳米技术的主要研究重点,但其可扩展生产仍然是一个重大挑战。在此,我们提出了一种简便的策略,通过在乳液滴中将聚(苯乙烯)-聚(2-乙烯基吡啶)(PS-P2VP)嵌段共聚物与10纳米的钴铁氧体纳米颗粒共组装来制备杂化光子微颗粒。这种方法能够形成具有交替同心层的高度有序、分层的洋葱状结构。纳米颗粒在P2VP域内的选择性定位在引入可调谐磁性能的同时,保留了结构着色所必需的周期性。光学表征证实,微颗粒呈现出鲜艳的蓝色结构色,并且在达到临界纳米颗粒浓度之前保持明确的光子带隙,超过该浓度后结构顺序被破坏。值得注意的是,聚合物基质的纳米结构顺序诱导了纳米颗粒磁易轴的部分取向,提高了磁化的热稳定性(即剩余磁化强度降低)。光子和磁性能之间这种独特的协同作用为多功能材料建立了一个平台,在磁可调光子器件、先进传感器和响应材料中具有潜在应用。结果展示了一种将光子结构与功能纳米材料融合的可扩展且通用的方法,为下一代杂化材料提供了设计机会。