Suppr超能文献

铁电小分子助力高性能锌离子电池。

Ferroelectric small molecule enabled high-performance zinc-ion batteries.

作者信息

Song Lixin, Zhang Ruizhe, Liao Zhiyong, Fan Yongbo, Li Yawen, Ma Longtao, Fan Huiqing

机构信息

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.

Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 100872, P. R. China.

出版信息

Mater Horiz. 2025 Jul 28. doi: 10.1039/d5mh01168j.

Abstract

To address the challenges of zinc-anode corrosion, hydrogen evolution reactions and dendrite growth in aqueous zinc-ion batteries, we introduce tetraethylammonium perchlorate (TEACC) as ferroelectric small molecules additives in an aqueous electrolyte. The TEACC molecules partially replace water molecules in the Zn solvation sheath and enrich the electrode/electrolyte interface with TEACC-OTf, creating a water-deficient inner Helmholtz plane. As a result, the activity of free water is suppressed and the hydrogen-evolution potential shifts from -0.124 V to -0.271 V Zn/Zn. This interfacial restructuring also facilitates the formation of a stable solid electrolyte interphase (SEI) consisting of ZnCO, ZnCl and ZnS compounds, promoting highly reversible Zn plating/stripping with the coulombic efficiency exceeding 99.5%. Furthermore, the inherent ferroelectric properties of TEACC generate localized electric fields that help homogenize the distribution of Zn across the electrode surface. This effectively suppresses dendritic growth and reduces the Zn nucleation overpotential by 35 mV. Electrochemical evaluation of full cells with Zn‖TBABr demonstrated impressive performance, with 92.94% capacity retention after 380 cycles at 1.25 A g and excellent rate capability across current densities from 0.5 to 3 A g. The system's practical applicability was further validated through flexible pouch cell configurations, where two series-connected cells powered 32 commercial LED indicators, showcasing the potential of this approach for flexible energy storage devices. Overall, the findings not only present a promising strategy for stabilizing zinc anode interfaces but also highlight the potential of ferroelectric molecular additives in advanced aqueous battery systems.

摘要

为应对水系锌离子电池中锌负极腐蚀、析氢反应和枝晶生长等挑战,我们引入高氯酸四乙铵(TEACC)作为水系电解质中的铁电小分子添加剂。TEACC分子部分取代了锌溶剂化鞘层中的水分子,并用TEACC-OTf富集电极/电解质界面,形成了缺水的内亥姆霍兹平面。结果,自由水的活性受到抑制,析氢电位从-0.124 V Zn/Zn 变为-0.271 V Zn/Zn。这种界面重构还促进了由ZnCO、ZnCl和ZnS化合物组成的稳定固体电解质界面(SEI)的形成,促进了高度可逆的锌电镀/剥离,库仑效率超过99.5%。此外,TEACC固有的铁电特性产生局部电场,有助于使锌在电极表面的分布均匀化。这有效地抑制了枝晶生长,并将锌成核过电位降低了35 mV。用Zn‖TBABr对全电池进行的电化学评估显示出令人印象深刻的性能,在1.25 A g下循环380次后容量保持率为92.94%,并且在0.5至3 A g的电流密度范围内具有出色的倍率性能。通过柔性软包电池配置进一步验证了该系统的实际适用性,其中两个串联的电池为32个商用LED指示灯供电,展示了这种方法在柔性储能设备中的潜力。总体而言,这些发现不仅提出了一种稳定锌负极界面的有前景的策略,还突出了铁电分子添加剂在先进水系电池系统中的潜力。

相似文献

1
Ferroelectric small molecule enabled high-performance zinc-ion batteries.
Mater Horiz. 2025 Jul 28. doi: 10.1039/d5mh01168j.
2
A dynamic amphiphilic additive with dual solubility modulates Zn solvation and SEI for a dendrite-free zinc anode.
Chem Sci. 2025 Jun 27;16(30):13655-13666. doi: 10.1039/d5sc03646a. eCollection 2025 Jul 30.
3
Ultrathin formvar film protective layer via simple dipping strategy for ultra-stable zinc-metal anodes.
J Colloid Interface Sci. 2025 Jul 15;700(Pt 2):138457. doi: 10.1016/j.jcis.2025.138457.
5
Methylsulfonylmethane-Regulated Hybrid Electrolyte for Stable Zn Anode and Suppressed Mn Dissolution.
Small. 2025 Jul;21(27):e2503938. doi: 10.1002/smll.202503938. Epub 2025 May 16.
6
Zinc Oxide Nanoplatelet-Coated Polypropylene Separators as a Bifunctional Tool for Enabling Dendrite-Free Lithium Metal Batteries: A Binder-Free Approach.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40409-40421. doi: 10.1021/acsami.5c06489. Epub 2025 Jul 1.
7
Reconstructing zinc anode interface for enhanced aqueous zinc-ion batteries using a trace-amount CHO additive.
J Colloid Interface Sci. 2025 Dec;699(Pt 2):138288. doi: 10.1016/j.jcis.2025.138288. Epub 2025 Jun 28.
8
A Fluorine-Free Organic/Inorganic Interphase for Highly Reversible Aqueous Zinc Batteries.
Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202504003. doi: 10.1002/anie.202504003. Epub 2025 Apr 30.
9
Carbonized polymer dots with intelligent recognition and dynamic protection for highly stable Zn-ion batteries.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 2):138499. doi: 10.1016/j.jcis.2025.138499. Epub 2025 Jul 20.
10
High-entropy solvation chemistry towards affordable and practical Ah-level zinc metal battery.
Nat Commun. 2025 Jul 3;16(1):6134. doi: 10.1038/s41467-025-61456-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验