Chen Yushan, Wang Ziwei, Fang Yun, Wang Guowei, Zhou Fang, Yu Junxia, Chi Ruan, Xiao Chunqiao
Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, No.206, Guanggu 1st Road, Donghu New & High Technology Development Zone, Wuhan, Hubei, 430205, China.
World J Microbiol Biotechnol. 2025 Jul 28;41(8):280. doi: 10.1007/s11274-025-04498-1.
The presence of soils contaminated with polycyclic aromatic hydrocarbons and heavy metals presents a widespread environmental challenge in industrial areas. Unlike single-pollutant systems, co-pollution by polycyclic aromatic hydrocarbons and heavy metals exhibits synergistic toxicity that weakens traditional remediation technologies. This review systematically examines microbial remediation strategies for such co-polluted soils, focusing on three levels of intervention: functional microorganisms, compost-based enhancement, and engineered microbial solutions. We highlight the role of noncovalent interactions, especially cation-π bonding and hydrophobic partitioning, in decreasing pollutant bioavailability and increasing co-toxicity. Functional microbes improve pollutant removal through intracellular transformation, extracellular secretion of biosurfactants and chelators, and surface adsorption. Compost-enhanced systems incorporating biochar, vermicompost, and mycorrhizal fungi demonstrate improved pollutant breakdown and soil health. Engineered microbes offer advanced remediation capabilities but face challenges related to metabolic load, ecological safety, and regulation. Despite promising laboratory results, field implementation remains limited by low pollutant bioavailability, biosafety concerns, and uncertain cost efficiency. We propose critical future research directions to bridge this gap and enable practical remediation of soils co-contaminated with polycyclic aromatic hydrocarbons and heavy metals.
受多环芳烃和重金属污染的土壤在工业区构成了广泛的环境挑战。与单一污染物系统不同,多环芳烃和重金属的共同污染表现出协同毒性,削弱了传统修复技术。本综述系统地研究了此类共同污染土壤的微生物修复策略,重点关注三个干预层面:功能微生物、基于堆肥的强化以及工程化微生物解决方案。我们强调了非共价相互作用,特别是阳离子-π键合和疏水分配,在降低污染物生物可利用性和增加共同毒性方面的作用。功能微生物通过细胞内转化、生物表面活性剂和螯合剂的细胞外分泌以及表面吸附来提高污染物去除率。包含生物炭、蚯蚓堆肥和菌根真菌的堆肥强化系统显示出更好的污染物分解和土壤健康状况。工程化微生物具有先进的修复能力,但面临与代谢负荷、生态安全和监管相关的挑战。尽管实验室结果很有前景,但现场应用仍受到污染物生物可利用性低、生物安全问题以及成本效益不确定的限制。我们提出了未来关键的研究方向,以弥合这一差距,并实现对受多环芳烃和重金属共同污染土壤的实际修复。