Takeuchi Eri, Sathyaprakash Chaitra, Takizawa Hotake, Motohashi Norio, Echigoya Yusuke, Yokota Toshifumi, Aoki Yoshitsugu
Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
Methods Mol Biol. 2025;2964:487-499. doi: 10.1007/978-1-0716-4730-1_33.
Phosphorodiamidate morpholino oligomer (PMO)-mediated exon-skipping is among the more promising approaches available for the treatment of several neuromuscular disorders, including Duchenne muscular dystrophy. The main weakness of this treatment arises from the low efficiency and sporadic nature of the delivery of neutrally charged PMOs into muscle fibres, the mechanism of which is unknown. Recently, using wild-type and dystrophic mdx52 mice, we showed that muscle fibres took up PMOs more efficiently during myotube formation. Interestingly, we detected PMO mainly in embryonic myosin heavy chain-positive regenerating fibres through in situ hybridisation. Next, we tested the therapeutic potential of PMOs in laminin-alpha2 (laminin-α2) chain-null dy/dy mice, a model of merosin-deficient congenital muscular dystrophy 1A (MDC1A or LAMA2-related muscular dystrophy: LAMA2-MD) with active muscle regeneration. We confirmed the recovery of the laminin-α2 chain following the skipping of the mutated exon 4 in dy/dy mice, which prolonged the lifespan of the animals slightly. These findings support the theory that PMO entry into fibres is dependent on the developmental stage in myogenesis rather than on dystrophin-deficient muscle membranes, and recommend a platform for the future development of PMO-mediated therapies for a variety of muscular disorders, such as LAMA2-MD, that involve active muscle regeneration. Herein, we describe the methods for PMO transfection/injection and the evaluation of the efficacy of exon-skipping in the laminin-α2-deficient dy/dy mouse model both in vitro and in vivo.
磷二酰胺吗啉代寡聚物(PMO)介导的外显子跳跃是治疗包括杜氏肌营养不良症在内的多种神经肌肉疾病的较有前景的方法之一。这种治疗方法的主要缺点在于将中性电荷的PMO输送到肌纤维中的效率低下且具有偶发性,其机制尚不清楚。最近,我们使用野生型和营养不良的mdx52小鼠,发现肌纤维在肌管形成过程中能更有效地摄取PMO。有趣的是,通过原位杂交,我们在胚胎肌球蛋白重链阳性的再生纤维中主要检测到了PMO。接下来,我们在层粘连蛋白α2(laminin-α2)链缺失的dy/dy小鼠(一种伴有活跃肌肉再生的缺乏merosin的先天性肌营养不良症1A(MDC1A或与层粘连蛋白α2相关的肌营养不良症:LAMA2-MD)模型)中测试了PMO的治疗潜力。我们证实了dy/dy小鼠中突变的外显子4跳跃后层粘连蛋白α2链的恢复,这使动物的寿命略有延长。这些发现支持了PMO进入纤维依赖于肌生成中的发育阶段而非依赖于肌营养不良蛋白缺陷的肌膜这一理论,并为未来开发用于治疗多种涉及活跃肌肉再生的肌肉疾病(如LAMA2-MD)的PMO介导疗法推荐了一个平台。在此,我们描述了在层粘连蛋白α2缺陷的dy/dy小鼠模型中进行PMO转染/注射以及体外和体内评估外显子跳跃疗效的方法。