Singh Kumar Saurabh, Suarez Duran Hernando, Del Pup Elena, Zafra Delgado Olga, van Wees Saskia C M, van der Hooft Justin J J, Medema Marnix H
Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
PLoS Biol. 2025 Jul 28;23(7):e3003307. doi: 10.1371/journal.pbio.3003307. eCollection 2025 Jul.
During evolution, plants have developed the ability to produce a vast array of specialized metabolites, which play crucial roles in helping plants adapt to different environmental niches. However, their biosynthetic pathways remain largely elusive. In the past decades, increasing numbers of plant biosynthetic pathways have been elucidated based on approaches utilizing genomics, transcriptomics, and metabolomics. These efforts, however, are limited by the fact that they typically adopt a target-based approach, requiring prior knowledge. Here, we present MEANtools, a systematic and unsupervised computational integrative omics workflow to predict candidate metabolic pathways de novo by leveraging knowledge of general reaction rules and metabolic structures stored in public databases. In our approach, possible connections between metabolites and transcripts that show correlated abundance across samples are identified using reaction rules linked to the transcript-encoded enzyme families. MEANtools thus assesses whether these reactions can connect transcript-correlated mass features within a candidate metabolic pathway. We validate MEANtools using a paired transcriptomic-metabolomic dataset recently generated to reconstruct the falcarindiol biosynthetic pathway in tomato. MEANtools correctly anticipated five out of seven steps of the characterized pathway and also identified other candidate pathways involved in specialized metabolism, which demonstrates its potential for hypothesis generation. Altogether, MEANtools represents a significant advancement to integrate multi-omics data for the elucidation of biochemical pathways in plants and beyond.
在进化过程中,植物已发展出产生大量特殊代谢产物的能力,这些代谢产物在帮助植物适应不同环境生态位方面发挥着关键作用。然而,它们的生物合成途径在很大程度上仍然不为人知。在过去几十年里,基于利用基因组学、转录组学和代谢组学的方法,越来越多的植物生物合成途径得以阐明。然而,这些努力受到它们通常采用基于靶点的方法这一事实的限制,这种方法需要先验知识。在此,我们展示了MEANtools,这是一种系统的、无监督的计算综合组学工作流程,通过利用存储在公共数据库中的一般反应规则和代谢结构知识,从头预测候选代谢途径。在我们的方法中,使用与转录本编码的酶家族相关的反应规则,识别跨样本显示相关丰度的代谢物和转录本之间的可能联系。因此,MEANtools评估这些反应是否能在候选代谢途径内连接与转录本相关的质量特征。我们使用最近生成的配对转录组学 - 代谢组学数据集验证了MEANtools,以重建番茄中镰叶芹二醇的生物合成途径。MEANtools正确预测了已表征途径七个步骤中的五个,还识别出了参与特殊代谢的其他候选途径,这证明了其产生假设的潜力。总之,MEANtools代表了在整合多组学数据以阐明植物及其他生物的生化途径方面的重大进展。