Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B Clément, 92290 Châtenay-Malabry, France.
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea.
Nat Prod Rep. 2021 Nov 17;38(11):1967-1993. doi: 10.1039/d1np00023c.
Covering: up to the end of 2020Recently introduced computational metabolome mining tools have started to positively impact the chemical and biological interpretation of untargeted metabolomics analyses. We believe that these current advances make it possible to start decomposing complex metabolite mixtures into substructure and chemical class information, thereby supporting pivotal tasks in metabolomics analysis including metabolite annotation, the comparison of metabolic profiles, and network analyses. In this review, we highlight and explain key tools and emerging strategies covering 2015 up to the end of 2020. The majority of these tools aim at processing and analyzing liquid chromatography coupled to mass spectrometry fragmentation data. We start with defining what substructures are, how they relate to molecular fingerprints, and how recognizing them helps to decompose complex mixtures. We continue with chemical classes that are based on the presence or absence of particular molecular scaffolds and/or functional groups and are thus intrinsically related to substructures. We discuss novel tools to mine substructures, annotate chemical compound classes, and create mass spectral networks from metabolomics data and demonstrate them using two case studies. We also review and speculate about the opportunities that NMR spectroscopy-based metabolome mining of complex metabolite mixtures offers to discover substructures and chemical classes. Finally, we will describe the main benefits and limitations of the current tools and strategies that rely on them, and our vision on how this exciting field can develop toward repository-scale-sized metabolomics analyses. Complementary sources of structural information from genomics analyses and well-curated taxonomic records are also discussed. Many research fields such as natural products discovery, pharmacokinetic and drug metabolism studies, and environmental metabolomics increasingly rely on untargeted metabolomics to gain biochemical and biological insights. The here described technical advances will benefit all those metabolomics disciplines by transforming spectral data into knowledge that can answer biological questions.
截至 2020 年底
最近引入的计算代谢组学挖掘工具开始对非靶向代谢组学分析的化学和生物学解释产生积极影响。我们相信,这些当前的进展使得将复杂的代谢物混合物分解为亚结构和化学类信息成为可能,从而支持代谢组学分析中的关键任务,包括代谢物注释、代谢谱比较和网络分析。在这篇综述中,我们重点介绍并解释了 2015 年至 2020 年底的关键工具和新兴策略。这些工具大多数旨在处理和分析液相色谱与质谱联用的碎裂数据。我们首先定义什么是亚结构,它们与分子指纹之间的关系,以及识别它们如何有助于分解复杂的混合物。然后我们继续介绍基于特定分子支架和/或功能基团的存在或不存在的化学类,它们与亚结构本质上相关。我们讨论了从代谢组学数据中挖掘亚结构、注释化学化合物类和创建质谱网络的新工具,并使用两个案例研究进行了演示。我们还回顾并推测了基于 NMR 光谱的复杂代谢物混合物代谢组学挖掘在发现亚结构和化学类方面的机会。最后,我们将描述当前工具和策略的主要优势和局限性,以及我们对这个令人兴奋的领域如何朝着基于存储库规模的代谢组学分析发展的看法。还讨论了来自基因组学分析和精心编目的分类记录的补充结构信息源。许多研究领域,如天然产物发现、药代动力学和药物代谢研究以及环境代谢组学,越来越依赖于非靶向代谢组学来获得生化和生物学见解。这里描述的技术进步将通过将光谱数据转化为能够回答生物学问题的知识,使所有这些代谢组学领域受益。