Suppr超能文献

在“我们所有人”研究项目中,使用一种新颖的以用户为中心的算法捕捉真实世界的习惯性睡眠模式,以预处理Fitbit数据:回顾性观察性纵向研究。

Capturing Real-World Habitual Sleep Patterns With a Novel User-Centric Algorithm to Preprocess Fitbit Data in the All of Us Research Program: Retrospective Observational Longitudinal Study.

作者信息

Master Hiral, Annis Jeffrey, Ching Jack H, Gleichauf Karla, Han Lide, Coleman Peyton, Full Kelsie M, Zheng Neil, Ruderfer Douglas, Hernandez John, Schneider Logan D, Brittain Evan L

机构信息

Vanderbilt University Medical Center, Nashville, TN, United States.

Google, Mountain View, CA, United States.

出版信息

J Med Internet Res. 2025 Jul 28;27:e71718. doi: 10.2196/71718.

Abstract

BACKGROUND

Commercial wearables such as Fitbit quantify sleep metrics using fixed calendar times as default measurement periods, which may not adequately account for individual variations in sleep patterns. To address this limitation, experts in sleep medicine and wearable technology developed a user-centric algorithm designed to more accurately reflect actual sleep behaviors and improve the validity of wearable-derived sleep metrics.

OBJECTIVE

This study aims to describe the development of a new user-centric algorithm, compare its performance with the default calendar-relative algorithm, and provide a practical guide for analyzing All of Us Fitbit sleep data on a cloud-based platform.

METHODS

The default and user-centric algorithms were implemented to preprocess and compute sleep metrics related to schedule, duration, and disturbances using high-resolution Fitbit sleep data from 8563 participants (median age 58.1 years, 6002/8341, 71.96%, female) in the All of Us Research Program (version 7 Controlled Tier). Variations in typical sleep patterns were calculated by examining the differences in the mean number of primary sleep logs classified by each algorithm. Linear mixed-effects models were used to compare differences in sleep metrics across quartiles of variation in typical sleep patterns.

RESULTS

Out of 8,452,630 total sleep logs collected over a median of 4.2 years of Fitbit monitoring, 401,777 (4.75%) nonprimary sleep logs identified by the default algorithm were reclassified as primary sleep by the user-centric algorithm. Variation in typical sleep patterns ranged from -0.08 to 1. Among participants with the greatest variation in typical sleep patterns, the user-centric algorithm identified significantly more total sleep time (by 17.6 minutes; P<.001), more wake after sleep onset (by 13.9 minutes; P<.001), and lower sleep efficiency (by 2.0%; P<.001), on average. Differences in sleep stage metrics between the 2 algorithms were modest.

CONCLUSIONS

The user-centric algorithm captures the natural variability in sleep schedules, providing an alternative approach to preprocess and evaluate sleep metrics related to schedule, duration, and disturbances. A publicly available R package facilitates the implementation of this algorithm for clinical and translational research.

摘要

背景

诸如Fitbit之类的商用可穿戴设备使用固定的日历时间作为默认测量周期来量化睡眠指标,这可能无法充分考虑睡眠模式的个体差异。为解决这一局限性,睡眠医学和可穿戴技术领域的专家开发了一种以用户为中心的算法,旨在更准确地反映实际睡眠行为并提高可穿戴设备得出的睡眠指标的有效性。

目的

本研究旨在描述一种新的以用户为中心的算法的开发过程,将其性能与默认的基于日历的算法进行比较,并为在基于云的平台上分析“我们所有人”项目中的Fitbit睡眠数据提供实用指南。

方法

使用“我们所有人”研究项目(第7版受控层)中8563名参与者(年龄中位数58.1岁,6002/8341,71.96%为女性)的高分辨率Fitbit睡眠数据,采用默认算法和以用户为中心的算法对与睡眠时间表、时长和干扰相关的睡眠指标进行预处理和计算。通过检查每种算法分类的主要睡眠记录的平均数差异,计算典型睡眠模式的变化。使用线性混合效应模型比较典型睡眠模式变化四分位数间睡眠指标的差异。

结果

在Fitbit监测的中位数4.2年期间收集的8452630条总睡眠记录中,默认算法识别出的401777条(4.75%)非主要睡眠记录被以用户为中心的算法重新分类为主要睡眠记录。典型睡眠模式的变化范围为-0.08至1。在典型睡眠模式变化最大的参与者中,以用户为中心的算法平均识别出明显更多的总睡眠时间(多17.6分钟;P<0.001)、更多的睡眠起始后觉醒时间(多13.9分钟;P<0.001)以及更低的睡眠效率(低2.0%;P<0.001)。两种算法在睡眠阶段指标上的差异不大。

结论

以用户为中心的算法捕捉了睡眠时间表中的自然变异性,为预处理和评估与睡眠时间表、时长和干扰相关的睡眠指标提供了一种替代方法。一个公开可用的R包有助于在临床和转化研究中实施该算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e72/12340457/176101f2da8b/jmir_v27i1e71718_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验