Suppr超能文献

使用基于FIJI的半自动工具进行高效的细胞质细胞定量分析。

Efficient cytoplasmic cell quantification using a semi-automated FIJI-based tool.

作者信息

Unger Lucas, Larsen Ulrik, Sharmine Shayla, Hossain Md Kaykobad, Legøy Thomas Aga, Vaudel Marc, Ghila Luiza, Chera Simona

机构信息

Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, Faculty of Medicine, University of Bergen, Glasblokkene 1, Haukelandsbakken 15, 5009, Bergen, Norway.

Department of Clinical Science, Faculty of Medicine, University of Bergen, Postboks 7804, 5020, Bergen, Norway.

出版信息

Sci Rep. 2025 Jul 28;15(1):27509. doi: 10.1038/s41598-025-12144-x.

Abstract

Quantification of subcellular structures such as nuclei and cytoplasmic proteins using staining methods based on fluorescent dyes or fluorescently tagged antibodies are widely used in scientific research. Accurate high-throughput quantitation of these assays can be time consuming and challenging. Here, we present our FIJI based Semi-Automated counting Macro termed SAM, and we validate its accuracy against manual counting and other automated counting methods. By introducing this automated quantification tool, we aim to contribute to the ongoing efforts to enhance the reliability, efficiency, and standardization of immunostaining analysis in the field of diabetes research and beyond.

摘要

使用基于荧光染料或荧光标记抗体的染色方法对细胞核和细胞质蛋白等亚细胞结构进行定量分析在科学研究中被广泛应用。对这些检测进行准确的高通量定量可能既耗时又具有挑战性。在此,我们展示了基于FIJI的半自动计数宏程序,称为SAM,并将其准确性与手动计数和其他自动计数方法进行了验证。通过引入这种自动定量工具,我们旨在为正在进行的努力做出贡献,以提高糖尿病研究及其他领域免疫染色分析的可靠性、效率和标准化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d4/12304148/da86c9182a34/41598_2025_12144_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验