Suppr超能文献

母体血浆游离RNA作为胎儿肺成熟度的预测性检测方法。

Maternal plasma cell-free RNA as a predictive test for fetal lung maturation.

作者信息

Carter Sean W D, Seah Kay Yi Michelle, Poh Si En, Koh Winston, Usuda Haruo, Johnson Erin L, Kumagai Yusaku, Takahashi Tsukasa, Monteiro Lara J, Peñailillo Reyna, Nardocci Gino, Watson Hannah R S, Saito Masatoshi, Choolani Mahesh A, Illanes Sebastián E, Kemp Matthew W

机构信息

Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore.

Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, 31 Biopolis Way, The Nanos, Singapore, #07-01138669, Singapore.

出版信息

BMC Med. 2025 Jul 28;23(1):441. doi: 10.1186/s12916-025-04256-y.

Abstract

BACKGROUND

A lack of tests to assess fetal development impacts decision making around antenatal steroid use in women at risk of preterm birth. We analyzed the expression of 21 cfRNA targets related to human fetal lung maturation. Discovery studies were performed using maternal and fetal sheep plasma, with results compared to fetal lung mRNA expression. These findings were then validated in first, second, and third trimester human maternal plasma samples.

METHODS

Discovery studies utilized a preterm sheep model of pregnancy. Date mated ewes received saline (control n = 6), or antenatal steroids (dexamethasone n = 12) (betamethasone n = 11) prior to delivery and ventilation. We analyzed the expression of 21 human cfRNA targets related to lung maturation in maternal and fetal sheep plasma and compared this to mRNA expression in fetal lung tissue. Findings were first validated in a separate cohort of sheep exposed to betamethasone (n = 8), intraamniotic LPS endotoxin for lung maturation (n = 6), or untreated term animals (n = 6). Findings were further validated in maternal plasma from a human cohort of uncomplicated term pregnancies (n = 10). Delivery and ventilation data were analyzed with ANOVA, Tukey HSD, and Dunnett T3 tests. A Random Forest algorithm identified genes that separated mature from immature fetal lung subgroups and determined AUC values for maternal and fetal cell-free RNA (cfRNA) feature sets to predict fetal lung maturation.

RESULTS

We demonstrate that the analysis of 21 human cfRNA targets in maternal plasma is highly predictive of fetal lung maturation status across antenatal steroid induced (Dexamethasone AUC = 0.93; Betamethasone AUC = 1) and physiological (AUC = 1) lung development models. Maternal plasma cfRNA expression in the dexamethasone antenatal steroid group closely resembled direct fetal lung tissue mRNA expression. These findings were then validated in human maternal plasma samples (1st vs. 3rd trimester AUC = 0.96; 2nd vs. 3rd trimester AUC = 1).

CONCLUSIONS

Further development of this technology may provide a rapid, minimally invasive, and cost-effective clinical tool to optimize patient selection for initial and repeat courses of antenatal steroids, along with insights into the molecular mechanisms underlying fetal lung development.

摘要

背景

缺乏评估胎儿发育的检测方法会影响对有早产风险的女性使用产前类固醇的决策。我们分析了21个与人类胎儿肺成熟相关的cfRNA靶点的表达。利用母羊和胎儿的血浆进行发现性研究,并将结果与胎儿肺mRNA表达进行比较。然后在孕早期、孕中期和孕晚期的人类母体血浆样本中对这些发现进行验证。

方法

发现性研究采用早产绵羊妊娠模型。配种后的母羊在分娩和通气前接受生理盐水(对照组n = 6)或产前类固醇(地塞米松n = 12)(倍他米松n = 11)。我们分析了母羊和胎儿血浆中21个与肺成熟相关的人类cfRNA靶点的表达,并将其与胎儿肺组织中的mRNA表达进行比较。研究结果首先在另一组接受倍他米松(n = 8)、羊膜腔内脂多糖内毒素促进肺成熟(n = 6)或未治疗的足月动物(n = 6)的绵羊中得到验证。研究结果在一组未合并并发症的足月妊娠人类母体血浆样本(n = 10)中进一步得到验证。采用方差分析、Tukey HSD和Dunnett T3检验分析分娩和通气数据。随机森林算法确定了区分成熟和未成熟胎儿肺亚组的基因,并确定了母体和胎儿游离RNA(cfRNA)特征集预测胎儿肺成熟的AUC值。

结果

我们证明,在产前类固醇诱导(地塞米松AUC = 0.93;倍他米松AUC = 1)和生理性(AUC = 1)肺发育模型中,分析母体血浆中的21个人类cfRNA靶点能够高度预测胎儿肺成熟状态。地塞米松产前类固醇组母体血浆cfRNA表达与胎儿肺组织直接mRNA表达非常相似。这些发现随后在人类母体血浆样本中得到验证(孕早期与孕晚期AUC = 0.96;孕中期与孕晚期AUC = 1)。

结论

这项技术的进一步发展可能会提供一种快速、微创且经济高效的临床工具,以优化产前类固醇初始和重复疗程的患者选择,并深入了解胎儿肺发育的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7484/12305955/50d850f5dac3/12916_2025_4256_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验