De Vicari Desirèe, Barba Marta, Cola Alice, Costa Clarissa, Palucci Mariachiara, Frigerio Matteo
Department of Gynecology, IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy.
Bioengineering (Basel). 2025 Jul 11;12(7):754. doi: 10.3390/bioengineering12070754.
Pelvic organ prolapse (POP) is a common pelvic floor disorder with substantial impact on women's quality of life, necessitating accurate and reproducible diagnostic methods. This study investigates the use of three-dimensional (3D) transperineal ultrasound, integrated with artificial intelligence (AI), to evaluate pelvic floor biomechanics and identify correlations between biometric parameters and prolapse severity. Thirty-seven female patients diagnosed with genital prolapse (mean age: 65.3 ± 10.6 years; mean BMI: 29.5 ± 3.8) were enrolled. All participants underwent standardized 3D transperineal ultrasound using the Mindray Smart Pelvic system, an AI-assisted imaging platform. Key biometric parameters-anteroposterior diameter, laterolateral diameter, and genital hiatus area-were measured under three functional states: rest, maximal Valsalva maneuver, and voluntary pelvic floor contraction. Additionally, two functional indices were derived: the distensibility index (ratio of Valsalva to rest) and the contractility index (ratio of contraction to rest), reflecting pelvic floor elasticity and muscular function, respectively. Statistical analysis included descriptive statistics and univariate correlation analysis using Pelvic Organ Prolapse Quantification (POP-Q) system scores. Results revealed a significant correlation between laterolateral diameter and prolapse severity across multiple compartments and functional states. In apical prolapse, the laterolateral diameter measured at rest and during both Valsalva and contraction showed positive correlations with POP-Q point C, indicating increasing transverse pelvic dimensions with more advanced prolapse (e.g., r = 0.42 to 0.58; < 0.05). In anterior compartment prolapse, the same parameter measured during Valsalva and contraction correlated significantly with POP-Q point AA (e.g., r = 0.45 to 0.61; < 0.05). Anteroposterior diameters and genital hiatus area were also analyzed but showed weaker or inconsistent correlations. AI integration facilitated real-time image segmentation and automated measurement, reducing operator dependency and increasing reproducibility. These findings highlight the laterolateral diameter as a strong, reproducible anatomical marker for POP severity, particularly when assessed dynamically. The combined use of AI-enhanced imaging and functional indices provides a novel, standardized, and objective approach for assessing pelvic floor dysfunction. This methodology supports more accurate diagnosis, individualized management planning, and long-term monitoring of pelvic floor disorders.
盆腔器官脱垂(POP)是一种常见的盆底疾病,对女性生活质量有重大影响,因此需要准确且可重复的诊断方法。本研究调查了结合人工智能(AI)的三维(3D)经会阴超声在评估盆底生物力学以及确定生物测量参数与脱垂严重程度之间相关性方面的应用。纳入了37例诊断为生殖器脱垂的女性患者(平均年龄:65.3±10.6岁;平均体重指数:29.5±3.8)。所有参与者均使用迈瑞智能盆底系统(一种AI辅助成像平台)接受标准化的3D经会阴超声检查。在三种功能状态下测量关键生物测量参数——前后径、左右径和生殖裂孔面积:静息状态、最大瓦尔萨尔瓦动作和盆底自主收缩。此外,还得出了两个功能指标:扩张指数(瓦尔萨尔瓦动作与静息状态的比值)和收缩指数(收缩与静息状态的比值),分别反映盆底弹性和肌肉功能。统计分析包括描述性统计以及使用盆腔器官脱垂定量(POP-Q)系统评分的单变量相关性分析。结果显示,在多个腔室和功能状态下,左右径与脱垂严重程度之间存在显著相关性。在顶端脱垂中,静息状态以及瓦尔萨尔瓦动作和收缩时测量的左右径与POP-Q点C呈正相关,表明随着脱垂程度加重,盆腔横向尺寸增加(例如,r = 0.42至0.58;P < 0.05)。在前盆腔脱垂中,瓦尔萨尔瓦动作和收缩时测量的相同参数与POP-Q点AA显著相关(例如,r = 0.45至0.61;P < 0.05)。前后径和生殖裂孔面积也进行了分析,但显示出较弱或不一致的相关性。AI整合有助于实时图像分割和自动测量,减少了对操作人员的依赖并提高了可重复性。这些发现突出了左右径作为POP严重程度的一个强大、可重复的解剖学标志物,尤其是在动态评估时。AI增强成像与功能指标的联合使用为评估盆底功能障碍提供了一种新颖、标准化且客观的方法。这种方法有助于更准确的诊断、个性化管理规划以及盆底疾病的长期监测。