Suppr超能文献

医疗保健中的24小时成分数据分析:临床潜力与未来方向

Twenty-Four-Hour Compositional Data Analysis in Healthcare: Clinical Potential and Future Directions.

作者信息

Clark Cain Craig Truman, Martins Clarice Maria de Lucena

机构信息

College of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK.

Laboratory for Integrative and Translational Research in Population Health, Research Centre in Physical Activity, Health and Leisure, University of Porto, 4200-450 Porto, Portugal.

出版信息

Int J Environ Res Public Health. 2025 Jun 25;22(7):1002. doi: 10.3390/ijerph22071002.

Abstract

Compositional Data Analysis (CoDA) is a powerful statistical approach for analyzing 24 h time-use data, effectively addressing the interdependence of sleep, sedentary behavior, and physical activity. Unlike traditional methods that struggle with perfect multicollinearity, CoDA handles time use as proportions of a whole, providing biologically meaningful insights into how daily activity patterns relate to health. Applications in epidemiology have linked variations in time allocation between behaviors to key health outcomes, including adiposity, cardiometabolic health, cognitive function, fitness, quality of life, glycomics, clinical psychometrics, and mental well-being. Research consistently shows that reallocating time from sedentary behavior to sleep or moderate-to-vigorous physical activity (MVPA) improves health outcomes. Importantly, CoDA reveals that optimal activity patterns vary across populations, supporting the need for personalized, context-specific recommendations rather than one-size-fits-all guidelines. By overcoming challenges in implementation and interpretation, CoDA has the potential to transform healthcare analytics and deepen our understanding of lifestyle behaviors' impact on health.

摘要

成分数据分析(CoDA)是一种用于分析24小时时间使用数据的强大统计方法,能有效解决睡眠、久坐行为和身体活动之间的相互依存关系。与传统方法在处理完全多重共线性时面临困难不同,CoDA将时间使用视为整体的比例,为日常活动模式与健康之间的关系提供具有生物学意义的见解。流行病学中的应用已将行为之间时间分配的变化与关键健康结果联系起来,包括肥胖、心脏代谢健康、认知功能、体能、生活质量、糖组学、临床心理测量学和心理健康。研究一直表明,将久坐行为的时间重新分配到睡眠或中度至剧烈身体活动(MVPA)中可改善健康结果。重要的是,CoDA揭示了最佳活动模式因人群而异,支持需要个性化、因地制宜的建议,而不是一刀切的指南。通过克服实施和解释方面的挑战,CoDA有潜力改变医疗保健分析,并加深我们对生活方式行为对健康影响的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验