Chaparro Diego, Goudeli Eirini
Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
Nanoscale. 2025 Apr 17;17(16):9705-9737. doi: 10.1039/d4nr05199h.
Engineered nanoparticles exhibit superior physicochemical, antibacterial, optical, and sensing properties compared to their bulk counterparts, rendering them attractive for biomedical applications. However, given that nanoparticle properties are sensitive to their nanostructural characteristics and their chemical stability is largely affected by physiological conditions, nanoparticle behavior can be unpredictable , requiring careful surface modification to ensure biocompatibility, prevent rapid aggregation, and maintain functionality under biological environments. Therefore, understanding the mechanisms of nanoparticle formation and macroscopic behavior in physiological media is essential for the development of structure-property relationships and, their rational design for biomedical applications. Computational simulations provide insight into nanoscale phenomena and nanoparticle dynamics, expediting material discovery and innovation. This review provides an overview of the process design and characterization of metallic and metal oxide nanoparticles with an emphasis on atomistic and mesoscale simulations for their application in bionanomedicine.
与块状材料相比,工程纳米粒子具有优异的物理化学、抗菌、光学和传感特性,使其在生物医学应用中具有吸引力。然而,鉴于纳米粒子的性质对其纳米结构特征敏感,且其化学稳定性在很大程度上受生理条件影响,纳米粒子的行为可能无法预测,需要进行仔细的表面修饰,以确保生物相容性、防止快速聚集并在生物环境中保持功能。因此,了解纳米粒子在生理介质中的形成机制和宏观行为,对于建立结构-性质关系以及对其进行生物医学应用的合理设计至关重要。计算模拟能够深入了解纳米尺度现象和纳米粒子动力学,加速材料发现与创新。本综述概述了金属和金属氧化物纳米粒子的工艺设计与表征,重点介绍了用于生物纳米医学应用的原子尺度和介观尺度模拟。