Khan Rizwan, Ahmad Shah Sawar, Ihsan Hasnain, Nadeem Syeda Sheeza, Zulfiqar Syed, Nugroho Ferry Anggoro Ardy
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia Depok 16424 Indonesia
Department of Physics, Abdul Wali Khan University Mardan Mardan Pakistan.
RSC Adv. 2025 Jul 28;15(33):26776-26786. doi: 10.1039/d5ra03721b. eCollection 2025 Jul 25.
This study reports the development of SnO@g-CN heterojunctions, a hybrid semiconductor photocatalyst with varying mass percent ratios using a facile precipitation method for hydrogen (H) production. The synergistic effect between the SnO nanoparticles and g-CN sheets suppresses the charge recombination and enhances carrier separation, leading to improved photocatalytic activity. The nanocomposites demonstrate increased hydrogen production across all composites, with SC-20 sample (, 80% SnO and 20% g-CN) achieving the highest H production rate of 287.7 μmol g h, that is, 1.87-fold and 1.63-fold higher than that of SnO and of g-CN counterparts, respectively. Furthermore, the nanocomposites maintain excellent photostability. Specifically, SC-20 achieves approximately 1500 μmol H evolution per 5 hour-cycle. The facile precipitation-based synthesis and enhanced photocatalytic activity of the SnO@g-CN nanocomposite position it as a reliable, cost-effective, and sustainable candidate for solar-driven hydrogen production and other clean energy applications.
本研究报道了通过简便的沉淀法制备具有不同质量百分比比的SnO@g-CN异质结,一种用于制氢的混合半导体光催化剂。SnO纳米颗粒与g-CN片层之间的协同效应抑制了电荷复合并增强了载流子分离,从而提高了光催化活性。所有复合材料的纳米复合材料的产氢量均有所增加,SC-20样品(80% SnO和20% g-CN)的最高产氢速率为287.7 μmol g h,分别比SnO和g-CN对应物高1.87倍和1.63倍。此外,纳米复合材料保持了优异的光稳定性。具体而言,SC-20在每5小时循环中实现约1500 μmol的析氢量。基于沉淀法的简便合成以及SnO@g-CN纳米复合材料增强的光催化活性使其成为太阳能驱动制氢和其他清洁能源应用的可靠、经济高效且可持续的候选材料。