Mohd Raub Aini Ayunni, Bahru Raihana, Mohd Nashruddin Siti Nur Ashakirin, Yunas Jumril
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
Institute of Informatics and Computing in Energy (IICE), Department of Computing College of Computing & Informatics, University of Tenaga Nasional, Malaysia.
Heliyon. 2024 Oct 11;10(20):e39079. doi: 10.1016/j.heliyon.2024.e39079. eCollection 2024 Oct 30.
Water splitting via photoelectrochemical (PEC) cells offers a promising route to generate hydrogen fuel using solar energy. Nanostructured metal oxides have emerged as leading candidates as photoelectrodes in photocatalytic H production due to their photo-electrochemical stability, large surface area, earth abundance, and suitable band gap energies. This review reports the recent advancements of nanostructured metal oxide as photoanodes in photoelectrochemical (PEC) water-splitting applications. This review focuses on recent advancements in metal oxide photoanodes, their synthesis methods, modification strategies, and performance in PEC water splitting. Critical materials such as TiO, FeO, WO, and BiVO are discussed in detail, highlighting their strengths, limitations, and future research directions to enhance efficiency and stability. This review will give clear insight into the trends and the critical factors for efficient metal oxide photoelectrode to improve the photocatalytic effectiveness in generating hydrogen fuel as an alternative energy source in the future. Finally, this study emphasises the potential of incorporating machine learning methods into experimental workflows to accelerate the optimisation of electrocatalysis performance, representing a significant advancement in developing efficient and sustainable hydrogen production technologies.
通过光电化学(PEC)电池进行水分解为利用太阳能生产氢燃料提供了一条很有前景的途径。纳米结构金属氧化物因其光电化学稳定性、大表面积、在地壳中储量丰富以及合适的带隙能量,已成为光催化制氢中作为光电极的主要候选材料。本综述报道了纳米结构金属氧化物作为光阳极在光电化学(PEC)水分解应用中的最新进展。本综述重点关注金属氧化物光阳极的最新进展、它们的合成方法、改性策略以及在PEC水分解中的性能。详细讨论了诸如TiO、FeO、WO和BiVO等关键材料,突出了它们的优势、局限性以及提高效率和稳定性的未来研究方向。本综述将清晰洞察高效金属氧化物光电极的趋势和关键因素,以提高未来作为替代能源生产氢燃料的光催化效率。最后,本研究强调了将机器学习方法纳入实验工作流程以加速电催化性能优化的潜力,这代表了开发高效和可持续制氢技术的重大进展。