Suppr超能文献

MCST-AFN:一种基于低精度分子动力学模型的多通道时空特征自适应融合网络框架

MCST-AFN: A Multichannel Spatiotemporal Feature Adaptive Fusion Network Framework Based on a Low-Fidelity Molecular Dynamics Model.

作者信息

Chen Xing, Liu Weichen, Ruan Tiantian, Shao Jinsong, Pandiyan Sanjeevi, Yao Min, Wang Li

机构信息

School of Information Science and Technology, Nantong University, Nantong 226019, Jiangsu, China.

Nantong Institute of Liver Disease, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China.

出版信息

ACS Omega. 2025 Jul 11;10(28):30232-30249. doi: 10.1021/acsomega.5c01443. eCollection 2025 Jul 22.

Abstract

The capability of predicting molecular properties plays a crucial role in drug development, and the learning of molecular representations stands as the primary step in tasks aimed at predicting molecular properties. Static three-dimensional (3D) structural information has been shown to significantly aid in molecular representation; however, molecules are in constant motion and change, implying that their properties should be closely linked with dynamic molecular conformations. Traditional four-dimensional (4D) Quantitative Structure-Property Relationship (QSPR) methods, while incorporating time as a dimension, have high computational costs and fail to fully integrate the temporal dimension, leading to ineffective integration of molecular conformation ensembles. Inspired by deep learning-based molecular dynamics (DLMD) techniques and multifidelity learning (MFL) strategies, in this work, a multichannel spatiotemporal feature adaptive fusion network framework (MCST-AFN) based on a low-fidelity molecular dynamics model is proposed. This framework integrates deep learning technology with molecular dynamics (MD) simulations, effectively enhancing molecular representation while significantly reducing computational costs. Initially, a low-fidelity molecular dynamics simulation model is trained using real molecular dynamics simulation data. Compared to existing tools such as Amber, this low-fidelity model can update atomic coordinates at a lower computational cost and output multichannel atom-level embeddings that encapsulate information across different time scales. Subsequently, an attention-based network is constructed to achieve adaptive fusion of multichannel spatiotemporal features, and a self-supervised learning task for atom masking prediction is designed to further enhance molecular representation. The MCST-AFN was tested on 13 benchmark data sets for molecular property prediction, achieving an average performance improvement of 2.10% across 12 data sets. The most significant enhancement was seen in the ESOL data set, with a performance boost of 19.70%.

摘要

预测分子性质的能力在药物开发中起着至关重要的作用,而分子表示的学习是旨在预测分子性质的任务中的首要步骤。静态三维(3D)结构信息已被证明对分子表示有显著帮助;然而,分子处于不断的运动和变化中,这意味着它们的性质应与动态分子构象密切相关。传统的四维(4D)定量结构-性质关系(QSPR)方法虽然将时间作为一个维度纳入,但计算成本高且未能充分整合时间维度,导致分子构象集合的整合效果不佳。受基于深度学习的分子动力学(DLMD)技术和多保真度学习(MFL)策略的启发,在这项工作中,提出了一种基于低保真分子动力学模型的多通道时空特征自适应融合网络框架(MCST-AFN)。该框架将深度学习技术与分子动力学(MD)模拟相结合,有效增强了分子表示,同时显著降低了计算成本。首先,使用真实的分子动力学模拟数据训练一个低保真分子动力学模拟模型。与Amber等现有工具相比,这个低保真模型可以以较低的计算成本更新原子坐标,并输出封装不同时间尺度信息的多通道原子级嵌入。随后,构建一个基于注意力的网络以实现多通道时空特征的自适应融合,并设计一个用于原子掩码预测的自监督学习任务以进一步增强分子表示。MCST-AFN在13个用于分子性质预测的基准数据集上进行了测试,在12个数据集中平均性能提高了2.10%。在ESOL数据集中提升最为显著,性能提高了19.70%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/133d/12290669/dafdf9d5d403/ao5c01443_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验