Suppr超能文献

使用机器学习对极早产儿机械通气需求进行早期预测

Early Prediction of Mechanical Ventilation Needs in Very Preterm Neonates Using Machine Learning.

作者信息

Gates Quinn, Ehwerhemuepha Louis, Janardhan Shruthi, Joshi Rhucha, Mikhael Michel

机构信息

CHOC Children's Hospital, Orange, California, USA.

Department of Pediatrics, University of California Irvine, Irvine, California, USA.

出版信息

Pediatr Pulmonol. 2025 Jul;60(7):e71195. doi: 10.1002/ppul.71195.

Abstract

BACKGROUND

The use of invasive mechanical ventilation (IMV) increases morbidity in patients but may be required for survival on a subset of patients. Delayed, as well as unnecessary, initiation of IMV increases morbidity and mortality among preterm neonates.

OBJECTIVE

To assess the use of machine learning in predicting need for IMV among patients on lower levels of respiratory support (CPAP failure) using the earliest clinical data captured in the electronic health records across multiple health systems in the United States. Accurate predictions may enable earlier proactive intervention to minimize CPAP failure and improve clinical outcomes.

METHODS

This study was conducted using the Oracle EHR Real-World Data (OERWD) database including preterm neonatal intensive care unit (NICU) admissions between 2012 and 2022. Demographics and the first set of vital signs and laboratory values were retrieved and used to train an extreme gradient boosting (XGBoost) machine learning model.

RESULTS

Twenty thousand three hundred and sixty-three neonates from 27 NICUs qualified for the study with CPAP failure rate of 69.0%. Fraction of inspired oxygen (FiO) was the strongest predictor of CPAP failure followed by systolic blood pressure, partial pressure of oxygen (PaO), birthweight, diastolic blood pressure, gestational age, and oxygen saturation. The resulting model attained an area under the receiver operator characteristic curve of 0.90 (95% CI: 0.89, 0.91) and an F score of 0.88.

CONCLUSIONS

Patients requiring IMV can be predicted early at birth with high accuracy. This may result in earlier initiation of IMV on patients who need it while reducing unnecessary intubations.

摘要

背景

有创机械通气(IMV)的使用会增加患者的发病率,但对于一部分患者的生存可能是必要的。IMV的延迟启动以及不必要的启动会增加早产儿的发病率和死亡率。

目的

利用美国多个医疗系统电子健康记录中最早获取的临床数据,评估机器学习在预测呼吸支持水平较低(持续气道正压通气失败)的患者对IMV的需求方面的应用。准确的预测可能有助于更早地进行积极干预,以尽量减少持续气道正压通气失败并改善临床结局。

方法

本研究使用甲骨文电子健康记录真实世界数据(OERWD)数据库,该数据库包括2012年至2022年期间入住早产儿重症监护病房(NICU)的患者。收集人口统计学数据以及第一组生命体征和实验室值,并用于训练极端梯度提升(XGBoost)机器学习模型。

结果

来自27个NICU的23663名新生儿符合该研究标准,持续气道正压通气失败率为69.0%。吸入氧分数(FiO)是持续气道正压通气失败的最强预测因素,其次是收缩压、氧分压(PaO)、出生体重、舒张压、胎龄和血氧饱和度。所得模型的受试者操作特征曲线下面积为0.90(95%CI:0.89,0.91),F评分为0.88。

结论

需要IMV的患者在出生时就能被高精度地早期预测。这可能会使需要IMV的患者更早地开始使用IMV,同时减少不必要的插管。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e47f/12305751/e6ade69dc970/PPUL-60-0-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验