Suppr超能文献

预测术后排列比例正常和轻度比例失调的成人脊柱畸形患者的机械并发症。

Predicting mechanical complications in adult spinal deformity patients with postoperative proportioned and moderately disproportioned alignment.

作者信息

Balaban Baris, Demirci Nuri, Yilgor Caglar, Yucekul Altug, Zulemyan Tais, Haddad Sleiman, Haleem Shahnawaz, Kilic Feyzi, Obeid Ibrahim, Pizones Javier, Kleinstueck Frank, Sanchez Perez Francisco Javier, Pellise Ferran, Alanay Ahmet, Bagci Cetin, Sezerman Osman Ugur

机构信息

Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye.

Acibadem University School of Medicine, Istanbul, Türkiye.

出版信息

Acta Orthop Traumatol Turc. 2025 Jul 18;59(4):210-221. doi: 10.5152/j.aott.2025.24146.

Abstract

Objective: Mechanical complications are common after adult spinal deformity (ASD) surgery and can significantly impair outcomes. This study aimed to predict such complications in proportioned and moderately disproportioned patients using a machine learning approach, to inform preoperative planning and enable early preventive care. Methods: Prospectively collected clinical data, including preoperative, intraoperative, and postoperative variables, radiographic param- eters, technical details, and patient-reported outcomes, were obtained from a multi-center ASD surgery database. Parameter tuning of a random forest (RF) classifier was performed using 9-times 3-fold cross-validation over 3 rounds of grid search, with the F-score used as the primary optimization metric. The final RF model was used to derive a clinically interpretable rule set using the inTrees framework. Permutation-based feature importance was assessed for F-score, accuracy, and sensitivity. Results: The model was trained on 295 patients (237 female, 58 male; mean age, 50 ± 19 years) with a minimum 2-year follow-up (mean 53 months, range 24-101). Mechanical complications were observed in 100 patients (34%). A test cohort of 98 patients (33% complication rate) was used for external validation. The RF model achieved 72% accuracy, 91% sensitivity, 64% specificity, and 93% negative predictive value. The derived rule set, comprising 8 rules using 1 to 3 features each, yielded 74% accuracy, 81% sensitivity, 71% specificity, and 83% negative predictive value. The location of the lower instrumented vertebra (LIV) was the most influential predictor. Conclusion: By excluding patients with severe deformities, as defined by the GAP score, this study focused on the more clinically ambiguous group of proportioned and moderately disproportioned patients. To the authors' knowledge, this is the first study to develop predictive tools specifically for this subgroup to assess the risk of mechanical complications following ASD surgery. These tools may assist in early risk stratification and guide preoperative decision-making to reduce postoperative complications and improve patient outcomes. Level of Evidence: Level III, Prognostic Study.

摘要

目的

成人脊柱畸形(ASD)手术后机械性并发症很常见,会显著影响手术效果。本研究旨在使用机器学习方法预测比例正常和中度比例失调患者的此类并发症,为术前规划提供信息并实现早期预防护理。方法:从一个多中心ASD手术数据库中获取前瞻性收集的临床数据,包括术前、术中和术后变量、影像学参数、技术细节以及患者报告的结果。使用随机森林(RF)分类器进行参数调整,通过3轮网格搜索进行9次3折交叉验证,以F分数作为主要优化指标。最终的RF模型用于使用inTrees框架得出临床可解释的规则集。基于排列的特征重要性针对F分数、准确性和敏感性进行评估。结果:该模型在295例患者(237例女性,58例男性;平均年龄50±19岁)上进行训练,随访时间至少2年(平均53个月,范围24 - 101个月)。100例患者(34%)出现机械性并发症。98例患者的测试队列(并发症发生率33%)用于外部验证。RF模型的准确率为72%,敏感性为91%,特异性为64%,阴性预测值为93%。得出的规则集由8条规则组成,每条规则使用1至3个特征,准确率为74%,敏感性为81%,特异性为71%,阴性预测值为83%。下位固定椎(LIV)的位置是最具影响力的预测因素。结论:通过排除GAP评分定义的严重畸形患者,本研究聚焦于比例正常和中度比例失调这一临床情况更不明确的患者群体。据作者所知,这是第一项专门为该亚组开发预测工具以评估ASD手术后机械性并发症风险的研究。这些工具可能有助于早期风险分层并指导术前决策,以减少术后并发症并改善患者结局。证据级别:III级,预后研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55fa/12362533/b8ba7bf89c25/aott-59-4-210_f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验