Suppr超能文献

排列良好的液晶界面和扩展的溶剂化鞘层加速锌去溶剂化动力学以实现稳定的锌电池。

Well-Aligned Liquid Crystal Interface and Expanded Solvation Sheath Accelerate Zn Desolvation Kinetics for Stable Zinc Batteries.

作者信息

Li Chen, Liu Yuxuan, Liu Jiangwen, Liu Mili, Gao Yulong, Wang Xinyu, Zheng Yongshuo, Liu Jun, Ma Longtao, Ouyang Liuzhang, Zhu Min

机构信息

School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, PR China.

Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510641, PR China.

出版信息

J Am Chem Soc. 2025 Aug 6;147(31):27640-27650. doi: 10.1021/jacs.5c06049. Epub 2025 Jul 29.

Abstract

The straightforward processing and assembly of zinc batteries enable large-scale production and cost-effective energy storage solutions. However, nonuniform Zn plating and parasitic reactions impede practical deployment, which can be addressed advanced interfacial modifications and enhanced Zn transport kinetics. Herein, we developed a trace additive based on a tailored liquid crystal molecule (4-pentyl-4'-cyanobiphenyl, 5CB), which preferentially adsorbs onto the zinc surface to form a dynamic ordered interfacial layer and modulate the Zn solvation shell due to its self-assembling and anisotropic properties. The interfacial layer inhibits solvent decomposition and side reactions, while the expanded solvation shell weakens Zn interactions with both solvents and anion, lowering the desolvation barrier and enabling fast, uniform Zn transport. Consequently, the Zn transfer number increases from 0.29 to 0.71, and epitaxial deposition of Zn along the (002) crystal plane is promoted, ensuring uniform zinc deposition. Benefiting from the liquid crystal interfacial layer, the Zn∥Zn symmetric cell demonstrates exceptional cycling stability for up to 2000 h, surpassing that without 5CB (only 400 h) while asymmetric Zn∥Ti cells with 5CB maintain >99.1% Coulombic efficiency after 1100 cycles, compared to rapid degradation without 5CB. The Zn∥PANI full cells deliver 157.6 mAh g at 0.1 A g, retaining 130.1 mAh g at a high current density of 5 A g, and achieves 86% capacity retention over 500 cycles. These findings highlight the effectiveness of liquid crystal interfacial engineering in improving Zn-ion transport kinetics and stabilizing Zn anodes, paving the way for high-performance, long-lifetime zinc batteries.

摘要

锌电池简单直接的加工和组装方式使其能够实现大规模生产,并提供具有成本效益的储能解决方案。然而,锌镀层不均匀和寄生反应阻碍了其实际应用,而先进的界面修饰和增强的锌传输动力学可以解决这些问题。在此,我们基于一种定制的液晶分子(4-戊基-4'-氰基联苯,5CB)开发了一种微量添加剂,该分子由于其自组装和各向异性特性,优先吸附在锌表面形成动态有序的界面层,并调节锌溶剂化层。该界面层抑制了溶剂分解和副反应,同时扩展的溶剂化层减弱了锌与溶剂和阴离子的相互作用,降低了去溶剂化能垒,实现了快速、均匀的锌传输。因此,锌转移数从0.29增加到0.71,并促进了锌沿(002)晶面的外延沉积,确保了锌的均匀沉积。受益于液晶界面层,锌∥锌对称电池展现出高达2000小时的卓越循环稳定性,超过了没有5CB时的情况(仅400小时),而含有5CB的不对称锌∥钛电池在1100次循环后保持>99.1%的库仑效率,相比之下没有5CB时会迅速降解。锌∥聚苯胺全电池在0.1 A g下的放电比容量为157.6 mAh g,在5 A g的高电流密度下仍保持130.1 mAh g,并在500次循环中实现了86%的容量保持率。这些发现突出了液晶界面工程在改善锌离子传输动力学和稳定锌负极方面的有效性,为高性能、长寿命锌电池的发展铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验