Shi Yunyu, Liu Yingkang, Chang Ruirui, Zhang Guilin, Rang Yuqing, Xu Zheng-Long, Meng Qi, Cao Penghui, Zhou Xiangyang, Tang Jingjing, Yang Juan
School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, People's Republic of China.
Nanomicro Lett. 2025 May 12;17(1):254. doi: 10.1007/s40820-025-01765-6.
Metallic Zn anodes suffer from hydrogen evolution and dendritic deposition in aqueous electrolytes, resulting in low Coulombic efficiency and poor cyclic stability for aqueous Zn-ion batteries (AZIBs). Constructing stable solid electrolyte interphase (SEI) with strong affinity for Zn and exclusion of water corrosion of Zn metal anodes is a promising strategy to tackle these challenges. In this study, we develop a self-healing ZnO-based SEI film on the Zn electrode surface by employing an aspartame (APM) as a versatile electrolyte additive. The hydrophobic nature and strong Zn affinity of APM can facilitate the dynamic self-healing of ZnO-based SEI film during cyclic Zn plating/stripping process. Benefiting from the superior protection effect of self-healing ZnO-based SEI, the Zn║Cu cells possess an average coulombic efficiency more than 99.59% over 1,000 cycles even at a low current density of 1 mA cm- 1 mAh cm. Furthermore, the Zn║NH-VO full cells display a large specific capacity of 150 mAh g and high cyclic stability with a capacity retention of 77.8% after 1,750 cycles. In addition, the Zn║Zn cell delivers high temperature adaptability at a wide-temperature range from - 5 to 40 °C even under a high DOD of 85.2%. The enhanced capability and durability originate from the self-healing SEI formation enabled by multifunctional APM additives mediating both corrosion suppression and interfacial stabilization. This work presents an inspired and straightforward approach to promote a dendrite-free and wide-temperature rechargeable AZIBs energy storage system.
金属锌阳极在水性电解质中会出现析氢和枝晶沉积现象,导致水系锌离子电池(AZIBs)的库仑效率较低且循环稳定性较差。构建对锌具有强亲和力且能防止锌金属阳极发生水腐蚀的稳定固体电解质界面(SEI)是应对这些挑战的一种很有前景的策略。在本研究中,我们通过使用阿斯巴甜(APM)作为一种多功能电解质添加剂,在锌电极表面制备了一种自修复的基于氧化锌的SEI膜。APM的疏水性质和对锌的强亲和力能够促进基于氧化锌的SEI膜在锌循环电镀/剥离过程中的动态自修复。受益于自修复的基于氧化锌的SEI的卓越保护效果,即使在1 mA cm- 1 mAh cm的低电流密度下,锌║铜电池在1000次循环中平均库仑效率仍超过99.59%。此外,锌║NH-VO全电池显示出150 mAh g的高比容量和高循环稳定性,在1750次循环后容量保持率为77.8%。此外,即使在85.2%的高深度放电状态下,锌║锌电池在- 5至40 °C的宽温度范围内仍具有高温适应性。增强的性能和耐久性源于多功能APM添加剂实现的自修复SEI形成,该添加剂既能抑制腐蚀又能稳定界面。这项工作提出了一种富有启发性且直接的方法,以促进无枝晶且宽温度的可充电AZIBs储能系统的发展。