Niu Caofeng, Xu Bing, Tian Jiachen, He Tongzhuang, Li Lizhu, Tian Weiqian, Wu Jingyi, Zhu Yue, Wang Huanlei, Chen Jingwei, Chen Li-Feng
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
Qingdao Key Laboratory of Marine Extreme Environment Materials, Qingdao 266404, China.
Mater Horiz. 2025 Aug 6. doi: 10.1039/d5mh01026h.
Aqueous zinc-ion batteries (AZIBs) are promising candidates for large-scale grid energy storage due to their inherent safety, durability, and low cost. However, their practical performance is hampered by the hydrogen evolution reaction (HER) on the Zn anode, which causes unstable Zn/electrolyte interfacial pH values, resulting in the formation of byproducts and uncontrollable Zn dendrite growth. To address these issues, we developed a layered solid Brønsted acid HNbMoO·HO (HNM) for interfacial pH regulation and Zn anode protection. Density functional theory (DFT) calculations suggested that the strong adsorption of OH ions by HNM ( = -4.15 eV) and the presence of abundant interlayer hydrated protons in HNM facilitated effective adsorption and neutralization of OH ions, thereby offering stable interfacial pH values, preventing alkaline byproduct formation and suppressing tip-induced dendrite growth. Moreover, the layered HNM established stable ion transport channels, enabling ordered Zn flux and homogeneous Zn deposition. Notably, HNM simultaneously inhibited the HER and accelerated the Zn/Zn plating/stripping kinetics. Consequently, HNM@Zn enabled an excellent Coulombic efficiency of 99.7% (over 1000 cycles) in asymmetrical cells, an exceptional Zn transference number of 0.79 and stable cycling for over 1750 hours in symmetrical cells, retaining a capacity of 130 mAh g after 1000 cycles in HNM@Zn||α-MnO full cells. This work provides insights into multifunctional anode engineering for interfacial pH regulation towards high-performance AZIBs.
水系锌离子电池(AZIBs)因其固有的安全性、耐久性和低成本,是大规模电网储能的理想候选者。然而,锌阳极上的析氢反应(HER)阻碍了它们的实际性能,这会导致锌/电解质界面pH值不稳定,进而形成副产物并导致锌枝晶生长失控。为了解决这些问题,我们开发了一种层状固体布朗斯特酸HNbMoO·HO(HNM)用于调节界面pH值和保护锌阳极。密度泛函理论(DFT)计算表明,HNM对OH离子具有很强的吸附作用( = -4.15 eV),且HNM中存在大量层间水合质子,有助于有效吸附和中和OH离子,从而提供稳定的界面pH值,防止碱性副产物形成并抑制尖端诱导的枝晶生长。此外,层状HNM建立了稳定的离子传输通道,使锌通量有序且锌沉积均匀。值得注意的是,HNM同时抑制了HER并加速了锌/锌的电镀/剥离动力学。因此,HNM@Zn在不对称电池中实现了99.7%的优异库仑效率(超过1000次循环),在对称电池中具有0.79的优异锌迁移数并能稳定循环超过1750小时,在HNM@Zn||α-MnO全电池中1000次循环后容量保持在130 mAh g。这项工作为通过调节界面pH值实现高性能AZIBs的多功能阳极工程提供了见解。