Suppr超能文献

用于浮力驱动净化的气体封装微胶囊(GEMs)内的可调谐气泡

Tunable Gas Bubbles within Gas-Encapsulating Microcapsules (GEMs) for Buoyancy-Driven Purification.

作者信息

Yeh Charles K, Huang Yijin, Schoenmakers Luuk H, Lee Daeyeon

机构信息

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Appl Mater Interfaces. 2025 Aug 6;17(31):45130-45138. doi: 10.1021/acsami.5c08301. Epub 2025 Jul 29.

Abstract

Certain aquatic microorganisms regulate buoyancy by producing intracellular gas vesicles. Separately, cavitation in drought-stressed plants illustrates how negative pressure can spontaneously generate gas bubbles. Inspired by both natural phenomena, we present gas bubble-encapsulating microcapsules (GEMs) that combine these principles, mimicking the buoyancy regulation of microbial gas vesicles and cavitation within plants by leveraging negative pressure to nucleate and control the size of gas bubbles. GEMs are derived from poly(d,l-lactide--glycolide) (PLGA) microcapsules with an aqueous core and a solid polymeric shell. Microcapsules experience a phenomenon known as osmosis-induced cavitation when transferred into an environment with high osmotic pressure. In this phenomenon, the internal aqueous phase experiences a large negative pressure, triggering cavitation, where gas bubbles nucleate and grow from dissolved air to form GEMs. This cavitation-based approach enables precise postfabrication control of bubble size by simply modulating the external salt concentration. We demonstrate that the buoyancy imparted by these internal gas bubbles allows for the effective purification of GEMs from impurities, such as polymer debris and defective microcapsules. Our strategy offers a straightforward, scalable, and highly controllable approach for producing GEMs. It also establishes a synthetic analogue to microbial gas vesicle systems with potential applications in purification, ultrasound theranostics, gastric drug delivery, and pressure-responsive delivery of active agents.

摘要

某些水生微生物通过产生细胞内气体囊泡来调节浮力。另外,干旱胁迫植物中的空化现象说明了负压如何自发产生气泡。受这两种自然现象的启发,我们提出了气泡封装微胶囊(GEMs),它结合了这些原理,通过利用负压使气泡成核并控制其大小,模拟了微生物气体囊泡的浮力调节和植物体内的空化现象。GEMs由具有水相核心和固体聚合物外壳的聚(d,l-丙交酯-乙交酯)(PLGA)微胶囊衍生而来。当微胶囊转移到高渗透压环境中时,会经历一种称为渗透诱导空化的现象。在这种现象中,内部水相会经历较大的负压,引发空化,气泡从溶解的空气中成核并生长,形成GEMs。这种基于空化的方法通过简单地调节外部盐浓度,实现了对气泡大小的精确后加工控制。我们证明,这些内部气泡赋予的浮力能够有效地从聚合物碎片和有缺陷的微胶囊等杂质中纯化GEMs。我们的策略为生产GEMs提供了一种直接、可扩展且高度可控的方法。它还建立了一种微生物气体囊泡系统的合成类似物,在纯化、超声诊疗、胃内药物递送和活性剂的压力响应递送方面具有潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验