Suppr超能文献

尿素介导的金@银核壳纳米结构生长工程:一种基于机器学习辅助比较分析的酶促检测策略

Urea-mediated growth engineering of Au@Ag core-shell nanostructures: an enzymatic detection strategy with machine learning-assisted comparative analysis.

作者信息

Shalileh Farzaneh, Hosseini Morteza, Golbashy Mohammad, Dadmehr Mehdi, Sabahi Hossein

机构信息

Nanobiosensors lab, Department of Nanobiotechnology and Biomimetics School of Life Science Engineering College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Mikrochim Acta. 2025 Jul 29;192(8):538. doi: 10.1007/s00604-025-07375-8.

Abstract

A non-invasive, enzyme-based colorimetric biosensor was developed for urea detection in saliva, utilizing a growth-based method with Au@Ag core-shell nanostructures, including CTAB-coated gold nanoparticles (AuNPs) and CTAB-coated gold nanorods with short (SAuNRs) and high (HAuNRs) aspect ratios. The biosensing mechanism relies on urease-mediated hydrolysis of urea, which raises the pH and enhances the reduction capability of ascorbic acid, leading to the formation of a silver shell on the gold nanostructures, causing colorimetric changes correlated to urea concentration. A machine-learning comparative analysis was also performed to assess how the nanostructure morphology of AuNPs, SAuNRs, and HAuNRs affects sensor performance. The results showed that the biosensor effectively detected urea with all three nanostructures, achieving the highest precision and accuracy using HAuNRs, with a limit of detection (LOD) of 0.26 mM and a linear range of 0.5-50 mM urea. The best-performing machine learning algorithms, evaluated using R, RMSE, and NRMSE metrics, were gradient boosting and extreme gradient boosting when applied to high aspect ratio gold nanorods. This innovative approach provides a cost-effective and user-friendly platform for urea detection, making it a promising tool for non-invasive diagnostics.

摘要

一种基于酶的非侵入式比色生物传感器被开发用于检测唾液中的尿素,它采用基于生长的方法,利用了金@银核壳纳米结构,包括十六烷基三甲基溴化铵(CTAB)包覆的金纳米颗粒(AuNPs)以及CTAB包覆的短径比(SAuNRs)和高径比(HAuNRs)的金纳米棒。生物传感机制依赖于脲酶介导的尿素水解,这会提高pH值并增强抗坏血酸的还原能力,导致在金纳米结构上形成银壳,从而引起与尿素浓度相关的比色变化。还进行了机器学习对比分析,以评估AuNPs、SAuNRs和HAuNRs的纳米结构形态如何影响传感器性能。结果表明,该生物传感器使用这三种纳米结构均能有效检测尿素,使用高径比金纳米棒时精度和准确度最高,检测限(LOD)为0.26 mM,尿素线性范围为0.5 - 50 mM。当应用于高径比金纳米棒时,使用R、RMSE和NRMSE指标评估的性能最佳的机器学习算法是梯度提升和极端梯度提升。这种创新方法为尿素检测提供了一个经济高效且用户友好的平台,使其成为非侵入性诊断的一个有前途的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验