Qin Jing, Wang Mengjiao
School of Computer and Artificial Intelligence, Huanghuai University, Zhumadian, 463000, Henan Province, China.
Sci Rep. 2025 Jul 29;15(1):27685. doi: 10.1038/s41598-025-13625-9.
To enhance effective communication between individuals with hearing impairments and those without, numerous researchers have developed a variety of sign language recognition technologies. However, in practical applications, sign language recognition devices must balance portability, energy consumption, cost, and user comfort, while vision-based sign language recognition must confront the challenge of model stability. Addressing these challenges, this study proposes an economical and stable dual-channel star-attention convolutional neural network (SACNN) deep learning network model based on computer vision technology. The model employs a star attention mechanism to enhance gesture features while concurrently diminishing background features, thereby achieving the acquisition of gesture features. Testing on the “ASL Finger Spelling” dataset demonstrated that the model achieved a high accuracy rate of 99.81%. Experimental results indicate that, compared to existing technologies, the SACNN network model proposed in this study exhibits superior generalization performance. You can find our source codes at https://github.com/wang123c/Sign-Language-Recognition.
为了加强听力障碍者与非听力障碍者之间的有效沟通,众多研究人员开发了多种手语识别技术。然而,在实际应用中,手语识别设备必须在便携性、能耗、成本和用户舒适度之间取得平衡,而基于视觉的手语识别则必须面对模型稳定性的挑战。针对这些挑战,本研究基于计算机视觉技术提出了一种经济且稳定的双通道星型注意力卷积神经网络(SACNN)深度学习网络模型。该模型采用星型注意力机制来增强手势特征,同时减少背景特征,从而实现对手势特征的获取。在“美国手语手指拼写”数据集上进行测试表明,该模型达到了99.81%的高精度率。实验结果表明,与现有技术相比,本研究提出的SACNN网络模型具有卓越的泛化性能。你可以在https://github.com/wang123c/Sign-Language-Recognition找到我们的源代码。