Suppr超能文献

基于视觉的智能系统:用于手语识别的堆叠编码深度学习框架。

Toward a Vision-Based Intelligent System: A Stacked Encoded Deep Learning Framework for Sign Language Recognition.

机构信息

Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia.

Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia.

出版信息

Sensors (Basel). 2023 Nov 9;23(22):9068. doi: 10.3390/s23229068.

Abstract

Sign language recognition, an essential interface between the hearing and deaf-mute communities, faces challenges with high false positive rates and computational costs, even with the use of advanced deep learning techniques. Our proposed solution is a stacked encoded model, combining artificial intelligence (AI) with the Internet of Things (IoT), which refines feature extraction and classification to overcome these challenges. We leverage a lightweight backbone model for preliminary feature extraction and use stacked autoencoders to further refine these features. Our approach harnesses the scalability of big data, showing notable improvement in accuracy, precision, recall, F1-score, and complexity analysis. Our model's effectiveness is demonstrated through testing on the ArSL2018 benchmark dataset, showcasing superior performance compared to state-of-the-art approaches. Additional validation through an ablation study with pre-trained convolutional neural network (CNN) models affirms our model's efficacy across all evaluation metrics. Our work paves the way for the sustainable development of high-performing, IoT-based sign-language-recognition applications.

摘要

手语识别是听障人士群体的重要接口,但存在高误报率和计算成本等挑战,即使使用先进的深度学习技术也是如此。我们提出的解决方案是一种堆叠编码模型,将人工智能 (AI) 和物联网 (IoT) 结合起来,通过改进特征提取和分类来克服这些挑战。我们利用轻量级骨干模型进行初步特征提取,并使用堆叠自动编码器进一步细化这些特征。我们的方法利用大数据的可扩展性,在准确性、精度、召回率、F1 分数和复杂度分析方面取得了显著的改进。我们通过在 ArSL2018 基准数据集上进行测试来验证模型的有效性,与最先进的方法相比,展示了卓越的性能。通过使用预训练卷积神经网络 (CNN) 模型进行消融研究的额外验证,证实了我们的模型在所有评估指标上的有效性。我们的工作为基于物联网的高性能手语识别应用的可持续发展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6d4/10674804/c8621e743082/sensors-23-09068-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验