Chao Sisi
School of Architecture Engineering, Xi'an Technological University, No. 2 Xuefuzhonglu Road, Weiyang District, Xi'an 710021, China.
Materials (Basel). 2025 Jul 8;18(14):3221. doi: 10.3390/ma18143221.
In the present study, the mechanical properties of high-strength steel rebar with different crossrib spacing that affect the bond behavior between steel rebar and concrete is investigated. To reveal the effects of crossrib spacing on the bond behavior of 630 MPa high-strength steel rebar (T63) in concrete, 42 bonding specimens were designed using T63 rebars and T63 rebars with increased crossrib spacing (TB63). The bond properties of two kinds of steel rebar with concrete were investigated by pull-out test and the failure modes, bond strengths, relative slippages, and bond-slip curves were obtained. Based on analysis of bond-slip curves, the applicability of the existing bond-slip constitutive model to describe T63 and TB63 rebars was discussed. It was found that 30-50% increase in crossrib spacing had little effect on the bond failure mode and bond strength of T63 rebar. The bond-slip curves of the two types of bonding specimens were similar and there is a 1.3 to 1.5-fold increase in peak slippage with TB63. The calculation method of critical bond length in Chinese code (GB 50010-2010) is applicable to T63 and TB63 rebars, and the bond-slip characteristics of T63 rebar with different crossrib spacings was reliably described by the bond-slip constitutive model. The research results can be used as the basis for the application of T63 reinforcement and can also be used as a reference for optimizing of rebar ribs outline.