Arumugam Aravinthan, Basak Animesh Kumar, Pramanik Alokesh, Littlefair Guy
School of Mechanical Engineering, Engineering Institute of Technology, Perth, WA 6005, Australia.
Adelaide Microscopy, Adelaide University, Adelaide, SA 5000, Australia.
Materials (Basel). 2025 Jul 10;18(14):3248. doi: 10.3390/ma18143248.
The incorporation of multi-material design (MMD) to achieve lightweight vehicles requires Friction Stir Spot Welding (FSSW) to join steel with aluminum, magnesium, or composites. This study investigates the mechanisms, challenges, and performance of FSSW in MMD based on the information available in the literature. It also explores the effect of FSSW tool geometries and design on the spot weld formation and mechanical strength. Larger shoulder and pin diameters increase heat generation during welding. A concave shoulder profile produces a stronger weld compared to flat and convex profiles due to its ability to trap materials and transfer materials to the sheet interface efficiently for the development of a sound weld. Grooves such as Fibonacci and involute, and threads on P-FSSW and R-FSSW tools, also contribute to effective material flow during welding, hence assisting in heat generation. This review also provides recommendations on tool design for FSSW, P-FSSW, and R-FSSW.
采用多材料设计(MMD)来实现车辆轻量化需要搅拌摩擦点焊(FSSW)将钢与铝、镁或复合材料连接起来。本研究基于文献中可用的信息,调查了MMD中FSSW的机理、挑战和性能。它还探讨了FSSW工具几何形状和设计对点焊形成和机械强度的影响。较大的肩部和销钉直径会增加焊接过程中的热量产生。与平面和凸面轮廓相比,凹面肩部轮廓能够捕获材料并将材料有效地转移到板材界面,从而形成更牢固的焊缝。斐波那契和渐开线等凹槽以及P-FSSW和R-FSSW工具上的螺纹,也有助于焊接过程中的有效材料流动,从而有助于产生热量。本综述还提供了关于FSSW、P-FSSW和R-FSSW工具设计的建议。