Aulika Ilze, Ogurcovs Andrejs, Kemere Meldra, Bundulis Arturs, Butikova Jelena, Kundzins Karlis, Bacher Emmanuel, Laurenzis Martin, Schertzer Stephane, Stopar Julija, Zore Ales, Kamnik Roman
Institute of Solid State Physics, University of Latvia, Kengaraga iela 8, LV-1063 Riga, Latvia.
French-German Research Institute of Saint-Louis, 5 rue du General Cassagnou, 68301 Saint-Louis Cedex, France.
Materials (Basel). 2025 Jul 11;18(14):3287. doi: 10.3390/ma18143287.
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability to curved or flexible surfaces. To overcome these limitations, we developed OptoSkin-a novel tactile platform leveraging direct time-of-flight (ToF) LiDAR principles for robust contact and pressure detection. In this extended study, we systematically evaluate how key optical properties of waveguide materials affect ToF signal behavior and sensing fidelity. We examine a diverse set of materials, characterized by varying light transmission (82-92)%, scattering coefficients (0.02-1.1) cm, diffuse reflectance (0.17-7.40)%, and refractive indices 1.398-1.537 at the ToF emitter wavelength of 940 nm. Through systematic evaluation, we demonstrate that controlled light scattering within the material significantly enhances ToF signal quality for both direct touch and near-proximity sensing. These findings underscore the critical role of material selection in designing efficient, low-cost, and geometry-independent optical tactile systems.
光学触觉传感作为协作式和人机交互机器人领域的一项基础技术正越来越受到关注,在这些领域中,可靠的触摸和压力反馈至关重要。基于全内反射(TIR)和受抑全内反射(FTIR)的传统系统通常需要复杂的红外设置,并且缺乏对弯曲或柔性表面的适应性。为了克服这些限制,我们开发了OptoSkin——一种新型触觉平台,它利用直接飞行时间(ToF)激光雷达原理进行可靠的接触和压力检测。在这项扩展研究中,我们系统地评估了波导材料的关键光学特性如何影响ToF信号行为和传感保真度。我们研究了各种材料,其在940nm的ToF发射器波长下具有不同的光透射率(82-92)%、散射系数(0.02-1.1)cm、漫反射率(0.17-7.40)%以及折射率1.398-1.537。通过系统评估,我们证明材料内部可控的光散射显著提高了直接触摸和近程传感的ToF信号质量。这些发现强调了材料选择在设计高效、低成本且与几何形状无关的光学触觉系统中的关键作用。