Hochster Hadas, Raanan Gal, Tiosano Eyal, Harari Yoav, Michaeli Golan, Rotbaum Yonatan, Haj-Ali Rami
School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
Materials (Basel). 2025 Jul 19;18(14):3394. doi: 10.3390/ma18143394.
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric High-Fidelity Generalized Method of Cells (PHFGMC) to predict the effective elastic properties and nonlinear mechanical response of AFP composites. The PHFGMC model integrates micro- and meso-scale analyses using representative volume elements (RVEs) derived from micrographs of AFP composite laminates to capture these manufacturing-induced characteristics. Multiple RVE configurations with varied gap patterns are analyzed to quantify the influence of mesostructural features on global stress-strain response. Predictions for linear and nonlinear elastic behaviors are validated against experimental results from carbon fiber/epoxy AFP specimens, demonstrating good quantitative agreement with measured responses. A cohesive extension of the PHFGMC framework further captures damage initiation and crack propagation under transverse tensile loading, revealing failure mechanisms specifically associated with tow gaps and resin-rich areas. By systematically accounting for manufacturing-induced variability through detailed RVE modeling, the nested PHFGMC framework enables the accurate prediction of global mechanical performance and localized behavior, providing a robust computational tool for optimizing AFP composite design in aerospace and other high-performance applications.
自动铺丝(AFP)复合材料由于制造过程中引起的细观结构变化而表现出复杂的力学行为,这些变化包括富树脂区域和丝束间隙,它们会显著影响局部应力分布和整体材料响应。本研究提出了一种基于参数化高保真广义单元法(PHFGMC)的分层嵌套建模框架,用于预测AFP复合材料的有效弹性性能和非线性力学响应。PHFGMC模型使用从AFP复合材料层压板微观图像中导出的代表性体积单元(RVE)来整合微观和细观尺度分析,以捕捉这些制造过程中引起的特征。分析了具有不同间隙模式的多种RVE构型,以量化细观结构特征对整体应力-应变响应的影响。针对碳纤维/环氧树脂AFP试样的实验结果,验证了线性和非线性弹性行为的预测结果,表明与测量响应具有良好的定量一致性。PHFGMC框架的内聚扩展进一步捕捉了横向拉伸载荷下的损伤起始和裂纹扩展,揭示了与丝束间隙和富树脂区域相关的失效机制。通过详细的RVE建模系统地考虑制造过程中引起的变异性,嵌套的PHFGMC框架能够准确预测整体力学性能和局部行为,为航空航天和其他高性能应用中优化AFP复合材料设计提供了一个强大的计算工具。