Fedotcheva Tatiana A, Shimanovsky Nikolay L
Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow 117997, Russia.
Pharmaceuticals (Basel). 2025 Jun 23;18(7):945. doi: 10.3390/ph18070945.
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic brain injury, fragile X syndrome, and chemical neurotoxicity. However, only the allopregnanolone analogs brexanolone and zuranolone have been recently approved by the FDA for the treatment of depression. The aim of this review was to evaluate whether the endogenous neurosteroids can be used in clinical practice as neuroprotectors. Neurosteroids are multitarget compounds with strong anti-inflammatory, immunomodulatory, and cytoprotective action; they stimulate the synthesis and release of BDNF and increase remyelination and regeneration. In addition to nuclear and membrane steroid hormone receptors, such as PR, mPR, PGRMC1,2, ER, AR, CAR, and PXR, they can bind to GABAA receptors, NMDA receptors, Sigma-1 and -2 receptors (σ1-R/σ2-R). Among these, mPRs, PGRMC1,2, sigma receptors, and mitochondrial proteins attract comprehensive attention because of strong binding with the P4 and DHEA, but subsequent signaling is poorly studied. Other plasma membrane and mitochondrial proteins are involved in the rapid nongenomic neuroprotective action of neurosteroids. P-glycoprotein, BCL-2 proteins, and the components of the mitochondrial permeability transition pore (mPTP) play a significant role in the defense against the injuries of the brain and the peripheral nervous system. The role of these proteins in the molecular mechanisms of action in neuroprotection and neuroinflammation has not yet been clearly established. The aspects of their participation in these pathological processes are discussed. New formulations, such as lipophilic emulsions, nanogels, and microneedle array patches, are attractive strategies to overcome the low bioavailability of these neurosteroids for the amelioration and treatment of various nervous disorders.
近年来,神经甾体孕烯醇酮、孕酮、别孕烯醇酮和脱氢表雄酮作为治疗神经退行性疾病和损伤后康复的候选药物受到了积极研究。这些神经甾体的神经保护机制已在抑郁症、癫痫、癫痫持续状态、创伤性脑损伤、脆性X综合征和化学性神经毒性的临床研究中得到证实。然而,最近只有别孕烯醇酮类似物布瑞诺龙和祖拉诺龙被美国食品药品监督管理局(FDA)批准用于治疗抑郁症。本综述的目的是评估内源性神经甾体是否可作为神经保护剂应用于临床实践。神经甾体是具有强大抗炎、免疫调节和细胞保护作用的多靶点化合物;它们刺激脑源性神经营养因子(BDNF)的合成和释放,并增加髓鞘再生和神经再生。除了核类固醇激素受体和膜类固醇激素受体,如孕激素受体(PR)、膜孕激素受体(mPR)、孕激素受体膜组分1和2(PGRMC1、2)、雌激素受体(ER)、雄激素受体(AR)、组成型雄烷受体(CAR)和孕烷X受体(PXR)外,它们还可与γ-氨基丁酸A型受体(GABAA受体)、N-甲基-D-天冬氨酸受体(NMDA受体)、西格玛1和西格玛2受体(σ1-R/σ2-R)结合。其中,mPRs、PGRMC1、2、西格玛受体和线粒体蛋白因与孕酮(P4)和脱氢表雄酮(DHEA)有强烈结合而受到广泛关注,但随后的信号传导研究较少。其他质膜和线粒体蛋白参与神经甾体的快速非基因组神经保护作用。P-糖蛋白、BCL-2蛋白和线粒体通透性转换孔(mPTP)的组分在抵御脑和外周神经系统损伤中起重要作用。这些蛋白在神经保护和神经炎症分子作用机制中的作用尚未明确确立。本文讨论了它们参与这些病理过程 的相关方面。新型制剂,如亲脂性乳剂、纳米凝胶和微针阵列贴片,是克服这些神经甾体低生物利用度以改善和治疗各种神经疾病的有吸引力的策略。