基于梯度协调的非独立同分布数据上人体姿态估计的联邦学习
Federated Learning for Human Pose Estimation on Non-IID Data via Gradient Coordination.
作者信息
Ni Peng, Xiang Dan, Jiang Dawei, Sun Jianwei, Cui Jingxiang
机构信息
School of Applied Technology, Changchun University of Technology, Changchun 130012, China.
College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China.
出版信息
Sensors (Basel). 2025 Jul 12;25(14):4372. doi: 10.3390/s25144372.
Human pose estimation is an important downstream task in computer vision, with significant applications in action recognition and virtual reality. However, data collected in a decentralized manner often exhibit non-independent and identically distributed (non-IID) characteristics, and traditional federated learning aggregation strategies can lead to gradient conflicts that impair model convergence and accuracy. To address this, we propose the Federated Gradient Harmonization aggregation strategy (FedGH), which coordinates update directions by measuring client gradient discrepancies and integrating gradient-projection correction with a parameter-reconstruction mechanism. Experiments conducted on a self-constructed single-arm robotic dataset and the public Max Planck Institute for Informatics (MPII Human Pose Dataset) dataset demonstrate that FedGH achieves average Percentage of Correct Keypoints (PCK) of 47.14% and 66.31% across all keypoints, representing improvements of 1.82 and 0.36 percentage points over the Federated Adaptive Weighting (FedAW) method. On our self-constructed dataset, FedGH attains a PCK of 86.4% for shoulder detection, surpassing other traditional federated learning methods by 20-30%. Moreover, on the self-constructed dataset, FedGH reaches over 98% accuracy in the keypoint heatmap regression model within the first 10 rounds and remains stable between 98% and 100% thereafter. This method effectively mitigates gradient conflicts in non-IID environments, providing a more robust optimization solution for distributed human pose estimation.
人体姿态估计是计算机视觉中一项重要的下游任务,在动作识别和虚拟现实中有重要应用。然而,以分散方式收集的数据往往呈现非独立同分布(non-IID)特征,传统的联邦学习聚合策略可能导致梯度冲突,从而损害模型的收敛性和准确性。为了解决这个问题,我们提出了联邦梯度协调聚合策略(FedGH),该策略通过测量客户端梯度差异并将梯度投影校正与参数重构机制相结合来协调更新方向。在自建的单臂机器人数据集和公共的马克斯·普朗克信息研究所(MPII人体姿态数据集)上进行的实验表明,FedGH在所有关键点上的平均正确关键点百分比(PCK)分别达到47.14%和66.31%,比联邦自适应加权(FedAW)方法提高了1.82和0.36个百分点。在我们自建的数据集中,FedGH在肩部检测方面的PCK达到86.4%,比其他传统联邦学习方法高出20%-30%。此外,在自建数据集中,FedGH在前10轮内关键点热图回归模型的准确率超过98%,此后在98%至100%之间保持稳定。该方法有效地缓解了非IID环境中的梯度冲突,为分布式人体姿态估计提供了更稳健的优化解决方案。