Suppr超能文献

基于多参数声发射分析的客运索道轴承健康状态评估

Health Status Assessment of Passenger Ropeway Bearings Based on Multi-Parameter Acoustic Emission Analysis.

作者信息

Zhang Junjiao, Shen Yongna, Wu Zhanwen, Shen Gongtian, Yuan Yilin, Hu Bin

机构信息

Key Laboratory of Nondestructive Testing and Evaluation, China Special Equipment Inspection & Research Institute, State Administration for Market Regulation, Beijing 100029, China.

出版信息

Sensors (Basel). 2025 Jul 15;25(14):4403. doi: 10.3390/s25144403.

Abstract

This study presents a comprehensive investigation of acoustic emission (AE) characteristics for condition monitoring of rolling bearings in passenger ropeway systems. Through controlled laboratory experiments and field validation across multiple operational ropeways, we establish an optimized AE-based diagnostic framework. Key findings demonstrate that resonant VS150-RIC sensors outperform broadband sensors in defect detection, showing greater energy response at characteristic frequencies for inner race defects. The RMS parameter emerges as a robust diagnostic indicator, with defective bearings exhibiting periodic peaks and higher mean RMS values. Field tests reveal progressive RMS escalation preceding visible damage, enabling predictive maintenance. Furthermore, we develop a novel Paligemma LLM model for automated wear detection using AE time-domain images. The research validates the AE technology's superiority over conventional vibration methods for low-speed bearing monitoring, providing a scientifically grounded approach for safety-critical ropeway maintenance.

摘要

本研究对客运索道系统中滚动轴承状态监测的声发射(AE)特性进行了全面调查。通过在多个运行索道上进行的受控实验室实验和现场验证,我们建立了一个基于AE的优化诊断框架。主要研究结果表明,共振VS150-RIC传感器在缺陷检测方面优于宽带传感器,在检测内圈缺陷的特征频率处显示出更大的能量响应。均方根(RMS)参数成为一个强大的诊断指标,有缺陷的轴承呈现出周期性峰值和更高的平均RMS值。现场测试表明,在可见损伤出现之前,RMS值会逐渐升高,从而实现预测性维护。此外,我们开发了一种新颖的Paligemma大语言模型,用于使用AE时域图像进行自动磨损检测。该研究验证了AE技术在低速轴承监测方面优于传统振动方法,为安全关键的索道维护提供了科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e14/12299867/c1921928e893/sensors-25-04403-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验