Suppr超能文献

一种用于农场到工厂牛奶质量连续监测的低成本人工智能物联网传感器。

An Inexpensive AI-Powered IoT Sensor for Continuous Farm-to-Factory Milk Quality Monitoring.

作者信息

Fizza Kaneez, Banerjee Abhik, Georgakopoulos Dimitrios, Jayaraman Prem Prakash, Yavari Ali, Dawod Anas

机构信息

Department of Computing Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia.

出版信息

Sensors (Basel). 2025 Jul 16;25(14):4439. doi: 10.3390/s25144439.

Abstract

The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in the supplier's tanks enables the production of higher quality products, better milk supply chain optimization, and reduced milk waste. This paper presents an inexpensive AI-powered IoT sensor that continuously measures the protein and fat in the raw milk in the tanks of dairy farms, pickup trucks, and intermediate storage depots across any milk supply chain. The proposed sensor consists of an in-tank IoT device and related software components that run on any IoT platform. The in-tank IoT device quality incorporates a low-cost spectrometer and a microcontroller that can send milk supply measurements to any IoT platform via NB-IoT. The in-tank IoT device of the milk quality sensor is housed in a food-safe polypropylene container that allows its deployment in any milk tank. The IoT software component of the milk quality sensors uses a specialized machine learning (ML) algorithm to translate the spectrometry measurements into milk fat and protein measurements. The paper presents the design of an in-tank IoT sensor and the corresponding IoT software translation of the spectrometry measurements to protein and fat measurements. Moreover, it includes an experimental milk quality sensor evaluation that shows that sensor accuracy is ±0.14% for fat and ±0.07% for protein.

摘要

生乳中的蛋白质和脂肪含量决定了其质量、市场价值以及向供应商的相关付款。技术人员在专门的实验室中使用昂贵的专业实验室设备来测量牛奶质量。对供应商储奶罐中的牛奶供应进行持续质量监测,能够生产出更高质量的产品,更好地优化牛奶供应链,并减少牛奶浪费。本文介绍了一种价格低廉的人工智能驱动的物联网传感器,它可以持续测量任何牛奶供应链中奶牛场、皮卡车和中间储存仓库的储奶罐中生乳的蛋白质和脂肪含量。所提出的传感器由一个罐内物联网设备和在任何物联网平台上运行的相关软件组件组成。罐内物联网设备集成了一个低成本光谱仪和一个微控制器,该微控制器可以通过窄带物联网(NB-IoT)将牛奶供应测量数据发送到任何物联网平台。牛奶质量传感器的罐内物联网设备安装在一个食品安全级的聚丙烯容器中,这使得它可以部署在任何牛奶罐中。牛奶质量传感器的物联网软件组件使用一种专门的机器学习(ML)算法,将光谱测量数据转换为牛奶脂肪和蛋白质测量数据。本文介绍了一种罐内物联网传感器的设计以及将光谱测量数据转换为蛋白质和脂肪测量数据的相应物联网软件。此外,它还包括一项牛奶质量传感器的实验评估,结果表明该传感器对脂肪的测量精度为±0.14%,对蛋白质的测量精度为±0.07%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验