Lin Xudong, Liao Dehao, Du Zhiguo, Wen Bin, Wu Zhihui, Tu Xianzhi
College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510640, China.
College of Arts, South China Agricultural University, Guangzhou 510640, China.
Sensors (Basel). 2025 Jul 17;25(14):4457. doi: 10.3390/s25144457.
To address the challenges of leaf-branch occlusion, fruit mutual occlusion, complex background interference, and scale variations in peach detection within complex orchard environments, this study proposes an improved YOLOv11n-based peach detection method named SDA-YOLO. First, in the backbone network, the LSKA module is embedded into the SPPF module to construct an SPPF-LSKA fusion module, enhancing multi-scale feature representation for peach targets. Second, an MPDIoU-based bounding box regression loss function replaces CIoU to improve localization accuracy for overlapping and occluded peaches. The DyHead Block is integrated into the detection head to form a DMDetect module, strengthening feature discrimination for small and occluded targets in complex backgrounds. To address insufficient feature fusion flexibility caused by scale variations from occlusion and illumination differences in multi-scale peach detection, a novel Adaptive Multi-Scale Fusion Pyramid (AMFP) module is proposed to enhance the neck network, improving flexibility in processing complex features. Experimental results demonstrate that SDA-YOLO achieves precision (P), recall (R), mAP@0.95, and mAP@0.5:0.95 of 90.8%, 85.4%, 90%, and 62.7%, respectively, surpassing YOLOv11n by 2.7%, 4.8%, 2.7%, and 7.2%. This verifies the method's robustness in complex orchard environments and provides effective technical support for intelligent fruit harvesting and yield estimation.
为应对复杂果园环境中桃子检测时的叶枝遮挡、果实相互遮挡、复杂背景干扰和尺度变化等挑战,本研究提出了一种基于改进YOLOv11n的桃子检测方法,名为SDA - YOLO。首先,在骨干网络中,将LSKA模块嵌入到SPPF模块中,构建SPPF - LSKA融合模块,增强对桃子目标的多尺度特征表示。其次,基于MPDIoU的边界框回归损失函数取代CIoU,以提高对重叠和遮挡桃子的定位精度。将DyHead Block集成到检测头中,形成DMDetect模块,加强对复杂背景下小目标和遮挡目标的特征辨别能力。为解决多尺度桃子检测中由于遮挡和光照差异导致的尺度变化引起的特征融合灵活性不足问题,提出了一种新颖的自适应多尺度融合金字塔(AMFP)模块来增强颈部网络,提高处理复杂特征的灵活性。实验结果表明,SDA - YOLO的精度(P)、召回率(R)、mAP@0.95和mAP@0.5:0.95分别达到90.8%、85.4%、90%和62.7%,比YOLOv11n分别高出2.7%、4.8%、2.7%和7.2%。这验证了该方法在复杂果园环境中的鲁棒性,并为智能水果采摘和产量估计提供了有效的技术支持。