Yuan Cao, Liu Libang, Li Yaqin, Li Jianxiang
School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430040, China.
Sensors (Basel). 2025 Jul 21;25(14):4509. doi: 10.3390/s25144509.
Camouflaged Object Detection (COD) aims to segment objects that are highly integrated with their background, presenting significant challenges such as low contrast, complex textures, and blurred boundaries. Existing deep learning methods often struggle to achieve robust segmentation under these conditions. To address these limitations, this paper proposes a novel COD network, SAM2-DFBCNet, built upon the SAM2 Hiera architecture. Our network incorporates three key modules: (1) the Camouflage-Aware Context Enhancement Module (CACEM), which fuses local and global features through an attention mechanism to enhance contextual awareness in low-contrast scenes; (2) the Cross-Scale Feature Interaction Bridge (CSFIB), which employs a bidirectional convolutional GRU for the dynamic fusion of multi-scale features, effectively mitigating representation inconsistencies caused by complex textures and deformations; and (3) the Dynamic Boundary Refinement Module (DBRM), which combines channel and spatial attention mechanisms to optimize boundary localization accuracy and enhance segmentation details. Extensive experiments on three public datasets-CAMO, COD10K, and NC4K-demonstrate that SAM2-DFBCNet outperforms twenty state-of-the-art methods, achieving maximum improvements of 7.4%, 5.78%, and 4.78% in key metrics such as -measure (Sα), -measure (Fβ), and mean -measure (Eϕ), respectively, while reducing the Mean Absolute Error () by 37.8%. These results validate the superior performance and robustness of our approach in complex camouflage scenarios.
伪装目标检测(COD)旨在分割与背景高度融合的目标,这带来了诸如低对比度、复杂纹理和模糊边界等重大挑战。现有的深度学习方法在这些条件下往往难以实现稳健的分割。为了解决这些局限性,本文提出了一种基于SAM2 Hierar架构构建的新型COD网络SAM2-DFBCNet。我们的网络包含三个关键模块:(1)伪装感知上下文增强模块(CACEM),它通过注意力机制融合局部和全局特征,以增强低对比度场景中的上下文感知;(2)跨尺度特征交互桥接(CSFIB),它采用双向卷积门控循环单元(GRU)进行多尺度特征的动态融合,有效减轻由复杂纹理和变形引起的表示不一致性;(3)动态边界细化模块(DBRM),它结合通道和空间注意力机制来优化边界定位精度并增强分割细节。在三个公共数据集——CAMO、COD10K和NC4K上进行的大量实验表明,SAM2-DFBCNet优于二十种先进方法,在诸如α-度量(Sα)、Fβ-度量(Fβ)和平均Eϕ-度量(Eϕ)等关键指标上分别实现了7.4%、5.78%和4.78%的最大提升,同时将平均绝对误差(MAE)降低了37.8%。这些结果验证了我们的方法在复杂伪装场景中的卓越性能和鲁棒性。