Suppr超能文献

帕金森病运动障碍检测中腕部佩戴设备的机遇与局限

Opportunities and Limitations of Wrist-Worn Devices for Dyskinesia Detection in Parkinson's Disease.

作者信息

Wiederhold Alexander Johannes, Zhu Qi Rui, Spiegel Sören, Dadkhah Adrin, Pötter-Nerger Monika, Langebrake Claudia, Ückert Frank, Gundler Christopher

机构信息

Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.

Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.

出版信息

Sensors (Basel). 2025 Jul 21;25(14):4514. doi: 10.3390/s25144514.

Abstract

During the in-hospital optimization of dopaminergic dosage for Parkinson's disease, drug-induced dyskinesias emerge as a common side effect. Wrist-worn devices present a substantial opportunity for continuous movement recording and the supportive identification of these dyskinesias. To bridge the gap between dyskinesia assessment and machine learning-enabled detection, the recorded information requires meaningful data representations. This study evaluates and compares two distinct representations of sensor data: a task-dependent, semantically grounded approach and automatically extracted large-scale time-series features. Each representation was assessed on public datasets to identify the best-performing machine learning model and subsequently applied to our own collected dataset to assess generalizability. Data representations incorporating semantic knowledge demonstrated comparable or superior performance to reported works, with peak F scores of 0.68. Generalization to our own dataset from clinical practice resulted in an observed F score of 0.53 using both setups. These results highlight the potential of semantic movement data analysis for dyskinesia detection. Dimensionality reduction in accelerometer-based movement data positively impacts performance, and models trained with semantically obtained features avoid overfitting. Expanding cohorts with standardized neurological assessments labeled by medical experts is essential for further improvements.

摘要

在帕金森病多巴胺能剂量的院内优化过程中,药物性异动症成为常见的副作用。腕戴式设备为连续运动记录以及这些异动症的辅助识别提供了重要契机。为弥合异动症评估与基于机器学习的检测之间的差距,所记录的信息需要有意义的数据表示。本研究评估并比较了传感器数据的两种不同表示方式:一种是依赖任务、语义有依据的方法,另一种是自动提取的大规模时间序列特征。每种表示方式都在公共数据集上进行评估,以确定性能最佳的机器学习模型,随后应用于我们自己收集的数据集以评估泛化能力。纳入语义知识的数据表示方式表现出与已报道研究相当或更优的性能,峰值F分数为0.68。从临床实践推广到我们自己的数据集时,两种设置下观察到的F分数均为0.53。这些结果凸显了语义运动数据分析在异动症检测方面的潜力。基于加速度计的运动数据降维对性能有积极影响,使用语义获取特征训练的模型可避免过拟合。通过医学专家标注的标准化神经学评估来扩大队列对于进一步改进至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验