Department of Computer Science, Ludwig Maximilians University Munich, Munich, Germany.
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada.
Sci Rep. 2020 Apr 3;10(1):5860. doi: 10.1038/s41598-020-61789-3.
Patients with advanced Parkinson's disease regularly experience unstable motor states. Objective and reliable monitoring of these fluctuations is an unmet need. We used deep learning to classify motion data from a single wrist-worn IMU sensor recording in unscripted environments. For validation purposes, patients were accompanied by a movement disorder expert, and their motor state was passively evaluated every minute. We acquired a dataset of 8,661 minutes of IMU data from 30 patients, with annotations about the motor state (OFF,ON, DYSKINETIC) based on MDS-UPDRS global bradykinesia item and the AIMS upper limb dyskinesia item. Using a 1-minute window size as an input for a convolutional neural network trained on data from a subset of patients, we achieved a three-class balanced accuracy of 0.654 on data from previously unseen subjects. This corresponds to detecting the OFF, ON, or DYSKINETIC motor state at a sensitivity/specificity of 0.64/0.89, 0.67/0.67 and 0.64/0.89, respectively. On average, the model outputs were highly correlated with the annotation on a per subject scale (r = 0.83/0.84; p < 0.0001), and sustained so for the highly resolved time windows of 1 minute (r = 0.64/0.70; p < 0.0001). Thus, we demonstrate the feasibility of long-term motor-state detection in a free-living setting with deep learning using motion data from a single IMU.
患有晚期帕金森病的患者经常会出现不稳定的运动状态。客观、可靠地监测这些波动是未满足的需求。我们使用深度学习技术来对来自未脚本化环境中单腕戴式 IMU 传感器记录的运动数据进行分类。为了验证目的,患者由运动障碍专家陪同,专家每分钟都会对患者的运动状态进行被动评估。我们从 30 名患者中采集了 8661 分钟的 IMU 数据,根据 MDS-UPDRS 全局运动迟缓和 AIMS 上肢运动障碍项目对运动状态(OFF、ON、DYSKINETIC)进行注释。使用 1 分钟窗口大小作为输入,对从患者子集数据中训练的卷积神经网络进行训练,我们在以前未见过的患者数据上实现了三分类平衡准确率为 0.654。这对应于以 0.64/0.89、0.67/0.67 和 0.64/0.89 的灵敏度/特异性检测 OFF、ON 或 DYSKINETIC 运动状态。平均而言,模型输出与个体尺度上的注释高度相关(r=0.83/0.84;p<0.0001),并且在 1 分钟的高度解析时间窗口内保持这种相关性(r=0.64/0.70;p<0.0001)。因此,我们使用单个 IMU 的运动数据证明了在自由生活环境中使用深度学习进行长期运动状态检测的可行性。