Ding Luyu, Zhang Chongxian, Yue Yuxiao, Yao Chunxia, Li Zhuo, Hu Yating, Yang Baozhu, Ma Weihong, Yu Ligen, Gao Ronghua, Li Qifeng
Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China.
Sensors (Basel). 2025 Jul 21;25(14):4515. doi: 10.3390/s25144515.
Accurate monitoring of animal behaviors enables improved management in precision livestock farming (PLF), supporting critical applications including health assessment, estrus detection, parturition monitoring, and feed intake estimation. Although both contact and non-contact sensing modalities are utilized, wearable devices with embedded sensors (e.g., accelerometers, pressure sensors) offer unique advantages through continuous data streams that enhance behavioral traceability. Focusing specifically on contact sensing techniques, this review examines sensor characteristics and data acquisition challenges, methodologies for processing behavioral data and implementing identification algorithms, industrial applications enabled by recognition outcomes, and prevailing challenges with emerging research opportunities. Current behavior classification relies predominantly on traditional machine learning or deep learning approaches with high-frequency data acquisition. The fundamental limitation restricting advancement in this field is the difficulty in maintaining high-fidelity recognition performance at reduced acquisition rates, particularly for integrated multi-behavior identification. Considering that the computational demands and limited adaptability to complex field environments remain significant constraints, Tiny Machine Learning (Tiny ML) could present opportunities to guide future research toward practical, scalable behavioral monitoring solutions. In addition, algorithm development for functional applications post behavior recognition may represent a critical future research direction.
对动物行为进行准确监测有助于改进精准畜牧业(PLF)的管理,支持包括健康评估、发情检测、分娩监测和采食量估计在内的关键应用。尽管接触式和非接触式传感方式都有应用,但带有嵌入式传感器(如加速度计、压力传感器)的可穿戴设备通过连续数据流提供了独特优势,增强了行为可追溯性。本综述特别关注接触式传感技术,研究了传感器特性和数据采集挑战、处理行为数据及实施识别算法的方法、识别结果促成的工业应用以及当前面临的挑战和新出现的研究机会。当前的行为分类主要依赖于采用高频数据采集的传统机器学习或深度学习方法。限制该领域进展的根本局限在于,在降低采集速率时难以维持高保真识别性能,尤其是对于集成多行为识别而言。鉴于计算需求以及对复杂现场环境的有限适应性仍然是重大制约因素, Tiny机器学习(Tiny ML)可能为引导未来研究走向实用、可扩展的行为监测解决方案带来机遇。此外,行为识别后功能应用的算法开发可能代表着未来一个关键的研究方向。