Suppr超能文献

用于监测车内空气质量的低成本物联网传感器及初步机器学习可行性研究:来自阿拉木图的一个试点案例

A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty.

作者信息

Tasmurzayev Nurdaulet, Amangeldy Bibars, Smagulova Gaukhar, Baigarayeva Zhanel, Imash Aigerim

机构信息

Institute of Combustion Problems, Almaty 050012, Kazakhstan.

LLP "DigitAlem", Almaty 050042, Kazakhstan.

出版信息

Sensors (Basel). 2025 Jul 21;25(14):4521. doi: 10.3390/s25144521.

Abstract

The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty's metro, buses, and trolleybuses, concentrations of CO and PM often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city's busiest transport corridors, analyzing how the concentrations of CO, PM, and PM, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty's most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems.

摘要

城市公共交通内的空气质量是乘客健康的关键决定因素。在阿拉木图地铁、公交车和无轨电车拥挤且通风不良的车厢内,一氧化碳(CO)和颗粒物(PM)的浓度常常积聚,增加了呼吸道和心血管疾病的风险。本研究调查了该市三条最繁忙交通走廊沿线的空气质量,分析了CO、PM以及温度和相对湿度的浓度如何随乘客密度和一天中的时间而波动。使用Tynys移动物联网设备进行连续测量,该设备针对商用参考传感器进行了实验室校准。基于同步的环境和载客数据训练了几种机器学习模型(逻辑回归、决策树、XGBoost和随机森林),其中XGBoost模型的预测准确率最高,为91.25%。我们的分析证实,乘客载客量是车厢内污染的主要驱动因素,并且这些机器学习模型有效地捕捉了环境变量之间的非线性关系。由于所调查的路线服务于阿拉木图人口最密集的地区,改善这些线路的通风对公众健康至关重要。此外,高时间分辨率数据揭示了与乘车高峰期相对应的短期污染峰值,深化了目前对出行中暴露风险的认识。这些发现凸显了将实时监测与通风升级相结合的迫切需求。它们还展示了使用低成本物联网技术和数据驱动分析来保障城市交通系统中公众健康的实用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验