Suppr超能文献

时间性寄生虫血症趋势可预测感染ANKA的小鼠实验性脑型疟疾的风险和发病时间。

Temporal Parasitemia Trends Predict Risk and Timing of Experimental Cerebral Malaria in Mice Infected by ANKA.

作者信息

Murin Peyton J, Daniel-Ribeiro Cláudio Tadeu, Carvalho Leonardo José Moura, Martins Yuri Chaves

机构信息

Department of Neurology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.

Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil.

出版信息

Pathogens. 2025 Jul 9;14(7):676. doi: 10.3390/pathogens14070676.

Abstract

BACKGROUND

Experimental models using ANKA (PbA)-infected mice have been essential for uncovering cerebral malaria (CM) pathogenesis. However, variability in experimental CM (ECM) incidence, onset, and mortality introduce challenges when analyses rely solely on infection day, which may reflect different disease stages among animals.

METHODS

We applied machine learning to predict ECM risk and onset in a cohort of 153 C57BL/6, 164 CBA, and 53 Swiss Webster mice. First, we fitted a logistic regression model to estimate the risk of ECM at any day using parasitemia data from day 1 to day 4. Next, we developed and trained a Random Forest Regressor model to predict the exact day of symptom onset.

RESULTS

A total of 64.5% of the cohort developed ECM, with onset ranging between 5 and 11 days. Early increases in parasitemia were strong predictors for the development of ECM, with an increase in parasitemia equal to or greater than 0.05 between day 1 and day 3 predicting the development of ECM with 97% sensitivity. The Random Forest model predicted the day of ECM onset with high precision (mean absolute error: 0.43, R: 0.64).

CONCLUSION

Parasitemia dynamics can effectively identify mice at high risk of ECM, enabling more accurate modeling of early pathological processes and improving the consistency of experimental analyses.

摘要

背景

使用感染ANKA(PbA)的小鼠建立的实验模型对于揭示脑型疟疾(CM)的发病机制至关重要。然而,当分析仅依赖感染天数时,实验性脑型疟疾(ECM)的发病率、发病时间和死亡率的变异性带来了挑战,因为这可能反映了动物之间不同的疾病阶段。

方法

我们应用机器学习来预测153只C57BL/6、164只CBA和53只瑞士韦伯斯特小鼠队列中的ECM风险和发病时间。首先,我们拟合了一个逻辑回归模型,使用第1天到第4天的寄生虫血症数据来估计任何一天发生ECM的风险。接下来,我们开发并训练了一个随机森林回归模型来预测症状出现的具体日期。

结果

该队列中共有64.5%的小鼠发生了ECM,发病时间在5至11天之间。寄生虫血症的早期增加是ECM发生的有力预测指标,第1天到第3天之间寄生虫血症增加等于或大于0.05预测ECM发生的敏感性为97%。随机森林模型高精度地预测了ECM发病日期(平均绝对误差:0.43,R:0.64)。

结论

寄生虫血症动态变化能够有效识别发生ECM高风险的小鼠,从而更准确地模拟早期病理过程并提高实验分析的一致性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验