Suppr超能文献

使用双向门控循环单元(BiGRU)和混合元启发式优化算法的数据驱动聚合物分类

Data-Driven Polymer Classification Using BiGRU and Hybrid Metaheuristic Optimization Algorithms.

作者信息

Parvez Mohammad Anwar, Mehedi Ibrahim M

机构信息

Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

School of Robotics, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, No. 111 Taicang Ave., Taicang, Suzhou 215400, China.

出版信息

Polymers (Basel). 2025 Jul 9;17(14):1894. doi: 10.3390/polym17141894.

Abstract

Polymers characterize a different and important class of materials through various industries, all with unique functional properties and structural attributes. Conventional models of polymer classification depend greatly on labor-intensive methods liable to human error and subjectivity. Hence, a continually growing requirement for new polymers with greater properties is a deep understanding and exploration of the chemical space. Hence, data-driven methods for polymers are developing and able to deal with unique challenges originating from the outstanding physical and chemical range of polymers at smaller and larger scales. Recently, Deep Learning (DL) models have considerably transformed material science by allowing for the automatic study and classification of composite polymers. In this paper, a novel optimization algorithm with a DL-Based Neural Networks for Data-Driven Polymer Classification (OADLNN-DDPC) model is proposed. The main intention of the OADLNN-DDPC model is to improve the classification model for data-driven polymers using state-of-the-art optimization algorithms. The data normalization stage is initially executed via Z-score normalization to convert input data into a beneficial format. In addition, the proposed OADLNN-DDPC model implements the bald eagle search (BES) model for feature selection to detect and retain the most appropriate features. For the polymer classification process, the bidirectional gated recurrent unit (BiGRU) technique is employed. Lastly, the zebra optimizer algorithm (ZOA) is implemented for the tuning process. Extensive experiments conducted on a polymers dataset with 19,500 records and 2048 features demonstrated that OADLNN-DDPC achieves an accuracy of 98.58%, outperforming existing models, such as LSTM (83.37%), PLS-DA (88.18%), and K-NN (98.36%). The simulation process of the OADLNN-DDPC model is performed under the polymer classification dataset. The experimental analysis specified that the OADLNN-DDPC model demonstrated improvement over another existing model.

摘要

聚合物在各个行业中代表着一类不同且重要的材料,它们都具有独特的功能特性和结构属性。传统的聚合物分类模型在很大程度上依赖于劳动密集型方法,容易出现人为误差和主观性。因此,对具有更优异性能的新型聚合物的需求不断增长,这就需要对化学空间进行深入理解和探索。因此,针对聚合物的数据驱动方法正在不断发展,并且能够应对源自聚合物在更小和更大尺度上卓越物理和化学范围的独特挑战。最近,深度学习(DL)模型通过实现复合聚合物的自动研究和分类,极大地改变了材料科学。本文提出了一种基于深度学习神经网络的数据驱动聚合物分类优化算法(OADLNN-DDPC)模型。OADLNN-DDPC模型的主要目的是使用最先进的优化算法改进数据驱动聚合物的分类模型。数据归一化阶段首先通过Z分数归一化执行,以将输入数据转换为有益的格式。此外,所提出的OADLNN-DDPC模型实现了秃鹰搜索(BES)模型进行特征选择,以检测并保留最合适的特征。对于聚合物分类过程,采用了双向门控循环单元(BiGRU)技术。最后,实现了斑马优化器算法(ZOA)进行调优过程。在一个具有19500条记录和2048个特征的聚合物数据集上进行的大量实验表明,OADLNN-DDPC的准确率达到98.58%,优于现有模型,如长短期记忆网络(LSTM,83.37%)、偏最小二乘判别分析(PLS-DA,88.18%)和K近邻算法(K-NN,98.36%)。OADLNN-DDPC模型的仿真过程是在聚合物分类数据集下进行的。实验分析表明,OADLNN-DDPC模型比另一个现有模型有改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验