Suppr超能文献

使用机器学习方法对聚合物薄膜进行在线分类。

Inline classification of polymer films using Machine learning methods.

机构信息

Chair of Waste Processing Technology and Waste Management, Department of Environmental and Energy Process Engineering, Montanuniversity Leoben, Franz Josef Straße 18, Leoben 8700, Austria.

Chair of Waste Processing Technology and Waste Management, Department of Environmental and Energy Process Engineering, Montanuniversity Leoben, Franz Josef Straße 18, Leoben 8700, Austria.

出版信息

Waste Manag. 2024 Feb 15;174:290-299. doi: 10.1016/j.wasman.2023.11.028. Epub 2023 Dec 9.

Abstract

Improving the sortability of plastic packaging film waste (PPFW) is crucial for increasing the recycling rate in Austria as they account for 150,000 t of the annually produced 300,000 t of plastic packaging waste. Currently PPFW is thermally recovered, as it is impossible to separate the mechanically recyclable monomaterial films from the non mechanically-recyclable multimaterial films. In this study, machine learning models capable of classifying inline into monolayer and multilayer films of PPFW according to their spectral fingerprint taken in transflection were created. Feature selection methods, like PCA and MRMR F-Tests, identified the most relevant spectral ranges for classification, that show the least redundancy and highest relevance. This effective subset of features decreases the required complexity of the model while reducing prediction time without compromising accuracy. The resulting models achieved a prediction accuracy of 85 % on unseen specimens with minimal prediction latency, effectively showing the inline applicability of these models in sorting aggregates.

摘要

提高塑料包装薄膜废物(PPFW)的可分拣性对于提高奥地利的回收率至关重要,因为它们占每年生产的 30 万吨塑料包装废物的 15 万吨。目前,PPFW 是通过热回收的,因为不可能将机械可回收的单材料薄膜与不可机械回收的多材料薄膜分离。在这项研究中,创建了能够根据在反射透射中获得的光谱指纹对 PPFW 的单层和多层薄膜进行在线分类的机器学习模型。特征选择方法,如 PCA 和 MRMR F-测试,确定了用于分类的最相关光谱范围,这些范围显示出最小的冗余度和最高的相关性。该特征的有效子集降低了模型的复杂性,同时减少了预测时间,而不会影响准确性。所得模型在未见样本上的预测准确率达到 85%,预测延迟最小,有效证明了这些模型在分拣中的在线适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验