文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于生物医学成像的肺癌和结肠癌优化临床诊断中迁移学习模型的增强融合。

An enhanced fusion of transfer learning models with optimization based clinical diagnosis of lung and colon cancer using biomedical imaging.

作者信息

Vinoth N A S, Kalaivani J, Arieth R Madonna, Sivasakthiselvan S, Park Gi-Cheon, Joshi Gyanendra Prasad, Cho Woong

机构信息

Department of Computing Technologies, School of Computing, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.

Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India.

出版信息

Sci Rep. 2025 Jul 7;15(1):24247. doi: 10.1038/s41598-025-10246-0.


DOI:10.1038/s41598-025-10246-0
PMID:40624106
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12234976/
Abstract

Lung and colon cancers (LCC) are among the foremost reasons for human death and disease. Early analysis of this disorder contains various tests, namely ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT). Despite analytical imaging, histopathology is one of the effective methods that delivers cell-level imaging of tissue under inspection. These are mainly due to a restricted number of patients receiving final analysis and early healing. Furthermore, there are probabilities of inter-observer faults. Clinical informatics is an interdisciplinary field that integrates healthcare, information technology, and data analytics to improve patient care, clinical decision-making, and medical research. Recently, deep learning (DL) proved to be effective in the medical sector, and cancer diagnosis can be made automatically by utilizing the capabilities of artificial intelligence (AI), enabling faster analysis of more cases cost-effectively. On the other hand, with extensive technical developments, DL has arisen as an effective device in medical settings, mainly in medical imaging. This study presents an Enhanced Fusion of Transfer Learning Models and Optimization-Based Clinical Biomedical Imaging for Accurate Lung and Colon Cancer Diagnosis (FTLMO-BILCCD) model. The main objective of the FTLMO-BILCCD technique is to develop an efficient method for LCC detection using clinical biomedical imaging. Initially, the image pre-processing stage applies the median filter (MF) model to eliminate the unwanted noise from the input image data. Furthermore, fusion models such as CapsNet, EffcientNetV2, and MobileNet-V3 Large are employed for the feature extraction. The FTLMO-BILCCD technique implements a hybrid of temporal pattern attention and bidirectional gated recurrent unit (TPA-BiGRU) for classification. Finally, the beluga whale optimization (BWO) technique alters the hyperparameter range of the TPA-BiGRU model optimally and results in greater classification performance. The FTLMO-BILCCD approach is experimented with under the LCC-HI dataset. The performance validation of the FTLMO-BILCCD approach portrayed a superior accuracy value of 99.16% over existing models.

摘要

肺癌和结肠癌是导致人类死亡和患病的主要原因之一。对这种疾病的早期分析包括各种检查,即超声(US)、磁共振成像(MRI)和计算机断层扫描(CT)。尽管有分析成像技术,但组织病理学是提供被检查组织细胞水平成像的有效方法之一。这主要是因为接受最终分析和早期治疗的患者数量有限。此外,还存在观察者间误差的可能性。临床信息学是一个跨学科领域,它整合了医疗保健、信息技术和数据分析,以改善患者护理、临床决策和医学研究。最近,深度学习(DL)被证明在医疗领域是有效的,利用人工智能(AI)的能力可以自动进行癌症诊断,可以更经济高效地对更多病例进行更快分析。另一方面,随着技术的广泛发展,深度学习已成为医疗环境中的一种有效工具,但主要应用于医学成像领域。本研究提出了一种用于准确诊断肺癌和结肠癌的转移学习模型与基于优化的临床生物医学成像的增强融合(FTLMO-BILCCD)模型。FTLMO-BILCCD技术的主要目标是以临床生物医学成像为基础,开发一种有效的肺癌和结肠癌检测方法。首先,图像预处理阶段应用中值滤波(MF)模型去除输入图像数据中的不必要噪声。此外,还采用了诸如胶囊网络(CapsNet)、高效网络V2(EffcientNetV2)和移动网络V3大模型(MobileNet-V3 Large)等融合模型进行特征提取。FTLMO-BILCCD技术采用时间模式注意力和双向门控循环单元(TPA-BiGRU)混合模型进行分类。最后采用白鲸优化(BWO)技术对TPA-BiGRU模型的超参数范围进行优化,从而获得更高的分类性能。FTLMO-BILCCD方法在LCC-HI数据集上进行了实验。FTLMO-BILCCD方法的性能验证表明,其准确率高达99.16%,优于现有模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/6236e1f35e20/41598_2025_10246_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/589e207dc1e3/41598_2025_10246_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/6173f0ed49f5/41598_2025_10246_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/b55a81781534/41598_2025_10246_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/763fd5002e2f/41598_2025_10246_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/5fb9d863c3b4/41598_2025_10246_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/b572f25150fd/41598_2025_10246_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/c293865e6b90/41598_2025_10246_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/4924194fc8d3/41598_2025_10246_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/ae977e123d2a/41598_2025_10246_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/1e8bb37488b9/41598_2025_10246_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/98a9442bfd24/41598_2025_10246_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/5ff4ed88c51f/41598_2025_10246_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/6ae85e3b9068/41598_2025_10246_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/9fd43b81a754/41598_2025_10246_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/6236e1f35e20/41598_2025_10246_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/589e207dc1e3/41598_2025_10246_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/6173f0ed49f5/41598_2025_10246_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/b55a81781534/41598_2025_10246_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/763fd5002e2f/41598_2025_10246_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/5fb9d863c3b4/41598_2025_10246_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/b572f25150fd/41598_2025_10246_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/c293865e6b90/41598_2025_10246_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/4924194fc8d3/41598_2025_10246_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/ae977e123d2a/41598_2025_10246_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/1e8bb37488b9/41598_2025_10246_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/98a9442bfd24/41598_2025_10246_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/5ff4ed88c51f/41598_2025_10246_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/6ae85e3b9068/41598_2025_10246_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/9fd43b81a754/41598_2025_10246_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f2b/12234976/6236e1f35e20/41598_2025_10246_Fig15_HTML.jpg

相似文献

[1]
An enhanced fusion of transfer learning models with optimization based clinical diagnosis of lung and colon cancer using biomedical imaging.

Sci Rep. 2025-7-7

[2]
Gesture recognition for hearing impaired people using an ensemble of deep learning models with improving beluga whale optimization-based hyperparameter tuning.

Sci Rep. 2025-7-1

[3]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[4]
The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation.

Health Technol Assess. 2011-9

[5]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[6]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
Design of Block-Scrambling-Based privacy protection mechanism in healthcare using fusion of transfer learning models with Hippopotamus optimization algorithm.

Sci Rep. 2025-7-1

[9]
Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Sci Rep. 2025-7-1

[10]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

本文引用的文献

[1]
A novel network-level fused deep learning architecture with shallow neural network classifier for gastrointestinal cancer classification from wireless capsule endoscopy images.

BMC Med Inform Decis Mak. 2025-3-31

[2]
DARNet: Deep Attention Module and Residual Block-Based Lung and Colon Cancer Diagnosis Network.

IEEE J Biomed Health Inform. 2024-11-20

[3]
GBCHV an advanced deep learning anatomy aware model for accurate classification of gallbladder cancer utilizing ultrasound images.

Sci Rep. 2025-2-28

[4]
A colonic polyps detection algorithm based on an improved YOLOv5s.

Sci Rep. 2025-2-26

[5]
Transfer Learning-Based Integration of Dual Imaging Modalities for Enhanced Classification Accuracy in Confocal Laser Endomicroscopy of Lung Cancer.

Cancers (Basel). 2025-2-11

[6]
Optimizing Bi-LSTM networks for improved lung cancer detection accuracy.

PLoS One. 2025-2-24

[7]
PortNet: Achieving lightweight architecture and high accuracy in lung cancer cell classification.

Heliyon. 2025-1-9

[8]
Advances in colorectal cancer diagnosis using optimal deep feature fusion approach on biomedical images.

Sci Rep. 2025-2-4

[9]
Enhanced Detection of Colon Diseases via a Fused Deep Learning Model with an Auxiliary Fusion Layer and Residual Blocks on Endoscopic Images.

Curr Med Imaging. 2025

[10]
Advanced Deep Learning Fusion Model for Early Multi-Classification of Lung and Colon Cancer Using Histopathological Images.

Diagnostics (Basel). 2024-10-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索