Motshabi Nthabiseng, Lenetha Gaofetoge Gobodiwang, Malimabe Moipone Alice, Gumede Thandi Patricia
Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa.
Division of Student Learning and Development, Faculty of Health Science, University of the Free State, Bloemfontein 9301, South Africa.
Polymers (Basel). 2025 Jul 16;17(14):1947. doi: 10.3390/polym17141947.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation.
石油基塑料对环境的影响推动了全球向可持续替代品的转变,如可生物降解聚合物,包括聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)和聚己内酯(PCL)。然而,这些生物塑料在机械和热性能方面往往存在局限性,阻碍了其更广泛的应用。用纤维素纳米纤维(CNF)增强已显示出前景,但大多数研究集中在木浆和棉花等传统来源,而忽视了农业残留物。本综述探讨了南非丰富的木质纤维素废料玉米壳作为CNF来源的潜力。它评估了有关玉米壳衍生的CNF的结构、提取、表征以及将其整合到可生物降解聚合物中的文献。该综述研究了与PLA、PBS或PCL共混时影响性能的化学成分、提取方法和关键物理化学性质。然而,高木质素含量和异质性带来了提取和分散方面的挑战。优化后的玉米壳CNF可以提高生物聚合物体系的机械强度、阻隔性能和耐热性。本综述强调了在包装、生物医学和农业领域的潜在应用,符合南非的生物经济目标。它最后确定了在工业规模上改善相容性和加工的研究重点,为玉米壳CNF成为绿色材料创新中有效、本地来源的增强材料铺平了道路。