Gil-Guerrero Sara, Ramos-Berdullas Nicolás, Mandado Marcos
Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain.
Molecules. 2025 Jul 17;30(14):2998. doi: 10.3390/molecules30142998.
The design of nanoscale electronic components remains a major challenge because we have limited control over the chemical and physical properties of their molecular constituents. Even subtle structural or compositional modifications can significantly alter their electronic behavior. Consequently, updating a molecular component often necessitates developing a new model from scratch. In this study, we present a comprehensive analysis of the rectification properties of a promising molecular diode initially proposed by Aviram and Van Dyck. The model has been systematically decomposed into fundamental building blocks, enabling the electron transport process to be examined both as an integrated event and as a sum of cooperative interactions. Our findings reveal that certain motifs-such as the D-σ-A architecture-play a significant role in rectification. However, achieving high-performance molecular rectifiers also requires cooperative interplay with other structural elements that contribute to rectification, such as asymmetric molecule-metal contacts. In this study, we conduct a detailed investigation of the roles these elements play in shaping the rectifying characteristics, and we further interpret their effects by analyzing the dominant transport channels under forward and backward bias conditions. This deeper understanding of the transport mechanism offers greater control over the system and opens the door for rational design strategies for improving rectification efficiency in future molecular devices.
纳米级电子元件的设计仍然是一项重大挑战,因为我们对其分子成分的化学和物理性质的控制有限。即使是细微的结构或成分改变也会显著改变其电子行为。因此,更新分子元件通常需要从头开发新模型。在本研究中,我们对最初由阿维拉姆和范戴克提出的一种有前景的分子二极管的整流特性进行了全面分析。该模型已被系统地分解为基本构建块,使得电子传输过程既能作为一个整体事件来研究,也能作为协同相互作用的总和来研究。我们的研究结果表明,某些基序——如D-σ-A结构——在整流中起重要作用。然而,要实现高性能分子整流器,还需要与其他有助于整流的结构元素进行协同相互作用,比如不对称分子-金属接触。在本研究中,我们详细研究了这些元素在塑造整流特性中所起的作用,并通过分析正向和反向偏置条件下的主导传输通道进一步解释它们的影响。对传输机制的这种更深入理解为系统提供了更大的控制能力,并为未来分子器件提高整流效率的合理设计策略打开了大门。