López-Luque Iván, Hack Jannis, Ródenas Tania, Henao Wilson, Mundet Bernat, Patil Prathamesh, Pichler Christian M, Marini Carlo, Agostini Giovanni, Meier Daniel M, Prieto Gonzalo
ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. Los Naranjos s/n, Valencia, 46022, Spain.
School of Engineering, Institute of Materials and Process Engineering, ZHAW Zurich University of Applied Sciences, Technikumstrasse 9, Winterthur, 8401, Switzerland.
Angew Chem Int Ed Engl. 2025 Sep 8;64(37):e202420126. doi: 10.1002/anie.202420126. Epub 2025 Jul 29.
The periphery surrounding oxide-supported metal nanoparticles plays a crucial role in many catalytic reactions that exhibit strong metal-oxide promotional effects. Engineering this catalytically active periphery, where kinetically relevant surface intermediates are efficiently turned over, offers a pathway to optimized performance, yet it remains challenging due to the need for precise control over nanospatial catalyst features. Herein, we address this subject for the relevant case of methanol synthesis by CO hydrogenation on Cu/ZrO catalysts. The methanol synthesis rate reaches a maximum at a surface-to-surface Cu interparticle distance of ca. 15 nm. Operando modulation-excitation diffuse reflectance infrared spectroscopy reveals that this optimal spacing maximizes the fraction of surface-bound HCOO* intermediates, stabilized on coordinatively unsaturated Zr(IV) Lewis acid sites on the ZrO support, which are dynamically involved in catalysis. This particle spacing represents a shift in the reaction's kinetic control regime and the apparent activation energy for methanol synthesis. Engineering Cu interparticle spacing to the optimal value results in exceptionally high metal-specific methanol formation rates under industrially relevant reaction conditions. More broadly, our findings highlight that, beyond metal particle size, interparticle spacing is a key design parameter for catalyst systems featuring functional metal-oxide interfaces.
氧化物负载金属纳米颗粒周围的边缘区域在许多表现出强烈金属 - 氧化物促进作用的催化反应中起着关键作用。设计这种具有催化活性的边缘区域(在该区域动力学相关的表面中间体能够高效转化)为优化性能提供了一条途径,但由于需要精确控制纳米空间催化剂特征,这仍然具有挑战性。在此,我们针对在Cu/ZrO催化剂上通过CO加氢合成甲醇的相关情况来探讨这一主题。甲醇合成速率在颗粒间表面到表面的铜间距约为15纳米时达到最大值。原位调制激发漫反射红外光谱表明,这种最佳间距使表面结合的HCOO*中间体的比例最大化,这些中间体稳定在ZrO载体上配位不饱和的Zr(IV)路易斯酸位点上,并且动态参与催化过程。这种颗粒间距代表了反应动力学控制机制的转变以及甲醇合成的表观活化能。将颗粒间铜间距设计为最佳值会在工业相关反应条件下产生极高的金属特定甲醇生成速率。更广泛地说,我们的研究结果突出表明,除了金属颗粒尺寸外,颗粒间间距是具有功能性金属 - 氧化物界面的催化剂体系的关键设计参数。