Haldor Topsøe A/S, Haldor Topsøes Allé 1, DK-2800 Kgs Lyngby, Denmark.
Haldor Topsøe A/S, Haldor Topsøes Allé 1, DK-2800 Kgs Lyngby, Denmark. Center for Individual Nanoparticle Functionality (CINF), Department of Physics, Technical University of Denmark, Building 312, DK-2800 Kgs Lyngby, Denmark.
Science. 2016 May 20;352(6288):969-74. doi: 10.1126/science.aaf0718.
Promoter elements enhance the activity and selectivity of heterogeneous catalysts. Here, we show how methanol synthesis from synthesis gas over copper (Cu) nanoparticles is boosted by zinc oxide (ZnO) nanoparticles. By combining surface area titration, electron microscopy, activity measurement, density functional theory calculations, and modeling, we show that the promotion is related to Zn atoms migrating in the Cu surface. The Zn coverage is quantitatively described as a function of the methanol synthesis conditions and of the size-dependent thermodynamic activities of the Cu and ZnO nanoparticles. Moreover, experimental data reveal a strong interdependency of the methanol synthesis activity and the Zn coverage. These results demonstrate the size-dependent activities of nanoparticles as a general means to design synergetic functionality in binary nanoparticle systems.
启动子元件增强了异质催化剂的活性和选择性。在这里,我们展示了氧化锌(ZnO)纳米粒子如何增强铜(Cu)纳米粒子上合成气甲醇合成的活性。通过结合表面积滴定、电子显微镜、活性测量、密度泛函理论计算和建模,我们表明这种促进作用与 Zn 原子在 Cu 表面的迁移有关。Zn 覆盖率定量描述为甲醇合成条件以及与 Cu 和 ZnO 纳米粒子的尺寸相关的热力学活性的函数。此外,实验数据揭示了甲醇合成活性和 Zn 覆盖率之间的强相关性。这些结果表明了纳米粒子的尺寸依赖性活性是设计二元纳米粒子系统协同功能的一种通用方法。