Suppr超能文献

电容增强型电池:在超大型MXene结构中集成高密度电池容量与超级电容的快速性

Capacitance-Enhanced Battery: Integrating High-Density Battery Capacity with Supercapacitive Swiftness in an Ultra-Large MXene Architecture.

作者信息

Li Yilin, Wang Lili, Sun Ziqi, Li Dongdong, Yuan Zeyu, Liu Haoran, Li Guangshe, Li Junzhi, Han Wei

机构信息

College of Physics, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China.

State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.

出版信息

Adv Mater. 2025 Jul 30:e08336. doi: 10.1002/adma.202508336.

Abstract

The rapid advancement of electrochemical energy storage based on earth-abundant sodium (Na) ions necessitates the seamless integration of high energy density and fast charge-discharge kinetics. A persistent challenge in this domain is the sluggish ion migration kinetics associated with the large ionic radii of Na ions, which significantly impact high-energy output applications, such as acceleration and climbing. Herein, a concept of Capacitance-Enhanced Battery (CEB) is proposed that leverages an ultra-large MXene framework interfaced with a BiS@ZnS composite(hereafter abbreviated as BiZnS) to form a C@BiZnS@VC heterostructure for reaching a dynamic dual-mechanism response. At low current densities, the system operates predominantly in a battery mode, wherein sodium-ion alloying and conversion reactions within the BiZnS framework ensure high energy retention. At high current densities, the heterostructure facilitates a supercapacitive mode, where active sites at the MXene and BiZnS surfaces and interfaces engage in rapid ion adsorption-desorption, enabling instantaneous energy delivery. This dual functionality imparts exceptional electrochemical performance of the Na-ion batteries, with a remarkable specific capacity of 270.4 mAh g at an ultra-high current density of 100 A g and extraordinary durability, maintaining outstanding electrochemical stability over 10 000 cycles at 20 A g. These findings underscore the transformative potential of CEBs and establish dual-mechanism electrodes for next-generation energy storage systems.

摘要

基于储量丰富的钠离子(Na)的电化学储能技术的快速发展,使得高能量密度和快速充放电动力学的无缝集成成为必要。该领域一直存在的一个挑战是,与钠离子较大的离子半径相关的离子迁移动力学缓慢,这对诸如加速和爬坡等高能量输出应用产生了重大影响。在此,我们提出了一种电容增强电池(CEB)的概念,该概念利用与BiS@ZnS复合材料(以下简称为BiZnS)连接的超大MXene框架,形成C@BiZnS@VC异质结构,以实现动态双机制响应。在低电流密度下,该系统主要以电池模式运行,其中BiZnS框架内的钠离子合金化和转化反应确保了高能量保持。在高电流密度下,异质结构促进了超级电容模式,其中MXene和BiZnS表面及界面处的活性位点参与快速离子吸附-解吸,实现即时能量传递。这种双重功能赋予了钠离子电池卓越的电化学性能,在100 A g的超高电流密度下具有270.4 mAh g的显著比容量,以及非凡的耐久性,在20 A g下经过10000次循环仍保持出色的电化学稳定性。这些发现强调了CEB的变革潜力,并为下一代储能系统建立了双机制电极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验