Zhussupbekov Kuanysh, Cabero Del Hierro Andrea, Berman Samuel, Spurling Dahnan, Zhussupbekova Ainur, Ippolito Stefano, O'Regan David D, Shvets Igor, Gogotsi Yury, Nicolosi Valeria
School of Physics, Trinity College Dublin, The University of Dublin, Dublin, D02 PN40, Ireland.
School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin, D02 PN40, Ireland.
Adv Sci (Weinh). 2025 Jul 30:e04394. doi: 10.1002/advs.202504394.
Nanoscale periodic Moiré superlattices based on 2D heterostructures offer an opportunity to unveil and exploit electronic and quantum properties that are not present in single-layer 2D and/or 3D bulk counterparts. However, a detailed understanding of the Moiré superlattices and their resulting electronic structure at the atomic scale is currently lacking in many systems, such as the fastest-growing family of 2D materials, MXenes. This is crucial for gaining fundamental knowledge and mastery over quantum phenomena in these materials. This study thoroughly examines and compares the self-assembled Moiré superlattices of the most prominent MXene, TiCT, by combining experimental scanning tunneling microscopy and spectroscopy with density functional theory calculations. Three distinct self-assembled Moiré patterns with a periodicity of 2.52, 2.39, and 1.25 nm are investigated. Experimental and theoretical data reveal that the Moiré superlattice with a periodicity of 1.25 nm exhibits a spatial modulation of the density of states in the conduction band due to electronic interlayer coupling effects. The findings unveil MXene Moiré superlattices at the atomic level and pave the way to a new research field in MXetronics and twistronics with great potential for quantum devices and related applications.
基于二维异质结构的纳米级周期性莫尔超晶格为揭示和利用单层二维和/或三维体材料中不存在的电子和量子特性提供了契机。然而,目前在许多系统中,如发展最快的二维材料家族MXenes,在原子尺度上对莫尔超晶格及其产生的电子结构缺乏详细的了解。这对于获取这些材料中量子现象的基础知识并掌握其规律至关重要。本研究通过将实验扫描隧道显微镜和光谱学与密度泛函理论计算相结合,全面研究并比较了最著名的MXene材料TiCT的自组装莫尔超晶格。研究了三种不同的自组装莫尔图案,其周期分别为2.52、2.39和1.25纳米。实验和理论数据表明,由于电子层间耦合效应,周期为1.25纳米的莫尔超晶格在导带中表现出态密度的空间调制。这些发现揭示了原子水平上的MXene莫尔超晶格,并为MXetronics和自旋电子学这一具有量子器件及相关应用巨大潜力的新研究领域铺平了道路。